题目内容

7.已知正项数列{an}前n项和为Sn,且2Sn=an2+n-1(n∈N+).
(Ⅰ)求数列{an}通项公式;
(Ⅱ)令bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

分析 (I)2Sn=an2+n-1(n∈N+),可得2a1=${a}_{1}^{2}$,a1>0,解得a1.n≥2时,2an=2(Sn-Sn-1),再利用等差数列的通项公式即可得出.
(II)bn=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,利用“裂项求和”方法即可得出.

解答 解:(I)∵2Sn=an2+n-1(n∈N+),∴2a1=${a}_{1}^{2}$,a1>0,解得a1=2.
n≥2时,2an=2(Sn-Sn-1)=an2+n-1-(${a}_{n-1}^{2}$+n-2),化为:$({a}_{n}-1)^{2}$=${a}_{n-1}^{2}$,
∴(an-an-1-1)(an+an-1-1)=0,an+an-1=1舍去.
可得an-an-1=1,
∴数列{an}是等差数列,首项为2,公差为1.
∴an=2+(n-1)=n+1.
(II)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
∴数列{bn}的前n项和Tn=$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{1}{2}-\frac{1}{n+2}$=$\frac{n}{n+2}$.

点评 本题考查了递推关系、“裂项求和”方法、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网