题目内容

12.设等差数列{an}前n项和为Sn,且a5+a6=24,S11=143.
(1)求数列{an}的通项公式;
(2)记bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

分析 (1)设等差数列{an}的首项为a1,公差为d,由已知列方程组求得首项和公差,代入等差数列的通项公式求得答案;
(2)把(1)中求得的通项公式代入bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,然后利用裂项相消法求得数列{bn}的前n项和Tn

解答 解:(1)设等差数列{an}的首项为a1,公差为d,
由a5+a6=24,S11=143,
得$\left\{\begin{array}{l}{2{a}_{1}+9d=24}\\{11({a}_{1}+5d)=143}\end{array}\right.$,解得a1=3,d=2.
∴an=3+2(n-1)=2n+1;
(2)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}=\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,
∴Tn=b1+b2+…+bn=$\frac{1}{2}(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n+1}-\frac{1}{2n+3})$=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$=$\frac{n}{6n+9}$.

点评 本题考查等差数列的通项公式,考查了等差数列的前n项和,训练了裂项相消法求数列的前n项和,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网