题目内容
8.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的离心率为$\sqrt{5}$,虚轴长为4.(Ⅰ)求双曲线的标准方程;
(Ⅱ)过点(0,1),倾斜角为45°的直线l与双曲线C相交于A、B两点,O为坐标原点,求△OAB的面积.
分析 (Ⅰ)运用双曲线的离心率公式和a,b,c的关系,解方程即可得到a=1,b=2,进而得到双曲线的方程;
(Ⅱ)直线l的方程为y=x+1,代入双曲线的方程,设A(x1,y1)、B(x2,y2),运用韦达定理和弦长公式,以及点到直线的距离公式,由三角形的面积公式计算即可得到所求值.
解答 解:(Ⅰ)依题意可得$\left\{\begin{array}{l}\frac{c}{a}=\sqrt{5}\\ 2b=4\\{c^2}={a^2}+{b^2}\end{array}\right.$,
解得$a=1,b=2,c=\sqrt{5}$,
∴双曲线的标准方程为${x^2}-\frac{y^2}{4}=1$.
(Ⅱ)直线l的方程为y=x+1,
设A(x1,y1)、B(x2,y2),
由$\left\{\begin{array}{l}y=x+1\\ 4{x^2}-{y^2}=4\end{array}\right.$可得3x2-2x-5=0,
由韦达定理可得 ${x_1}+{x_2}=\frac{2}{3}$,${x_1}{x_2}=-\frac{5}{3}$,
即 $|{AB}|=\sqrt{1+{k^2}}\sqrt{{{({{x_1}+{x_2}})}^2}-4{x_1}{x_2}}=\sqrt{2}\sqrt{\frac{4}{9}+\frac{20}{3}}=\frac{{8\sqrt{2}}}{3}$,
原点到直线l的距离为$d=\frac{{\sqrt{2}}}{2}$,
于是${S_{△OAB}}=\frac{1}{2}•|{AB}|•d=\frac{1}{2}×\frac{{8\sqrt{2}}}{3}×\frac{{\sqrt{2}}}{2}=\frac{4}{3}$,
∴△AOB的面积为$\frac{4}{3}$.
点评 本题考查双曲线的方程的求法,注意运用离心率公式和a,b,c的关系,考查三角形的面积的求法,注意运用联立直线方程和双曲线的方程,运用韦达定理和弦长公式,考查运算能力,属于中档题.
| A. | 3-i | B. | 3+i | C. | -3-i | D. | -3+i |
| A. | 平面SAB | B. | 平面SAC | C. | 平面SCD | D. | 平面ABCD |
| A. | (1,$\sqrt{2}$) | B. | (1,$\sqrt{10}$) | C. | ($\sqrt{2}$,$\sqrt{10}$) | D. | ($\sqrt{5}$,$\sqrt{10}$) |
| A. | 4 | B. | $\sqrt{7}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\sqrt{3}$ |
| A. | y=±4x | B. | y=±2x | C. | y=±$\frac{1}{2}$x | D. | y=±$\frac{1}{4}$x |