题目内容

设等差数列{an}的首项a1为a,d=2,前n项和为Sn
(Ⅰ)若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ)证明:?n∈N*,Sn,Sn+1,Sn+2不构成等比数列.
考点:等比关系的确定,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)利用等差数列的前n项和,结合S1,S2,S4成等比数列,求出a,即可求数列{an}的通项公式;
(Ⅱ)利用(Ⅰ)求前n项和公式,求出Sn•Sn+2、Sn+12的表达式,再化简Sn•Sn+2-Sn+12证明小于0,由等比中项的性质?n∈N*,Sn,Sn+1,Sn+2不构成等比数列.
解答: 解:(Ⅰ)等差数列{an}的首项a1为a,公差d=2,
则数列的前n项和为Sn=na+n(n-1)=n2+(a-1)n.
∵S1=a,S2=2a+2,S4=4a+12,S1,S2,S4等比数列,
∴(2a+2)2=a(4a+12),解得a=1,
数列{an}的通项公式:an=1+(n-1)×2=2n-1.
证明:(Ⅱ)由(Ⅰ)得,Sn=n2+(a-1)n,对n∈N*,a∈R,
Sn•Sn+2=[n2+(a-1)n][(n+2)2+(a-1)(n+2)]
=n2(n+2)2+n2(a-1)(n+2)+(a-1)n(n+2)2+(a-1)2n(n+2)
=n(n+2)[(n+a)2-1],
Sn+12=[(n+1)2+(a-1)(n+1)]2
=(n+1)2(n+a)2
则Sn•Sn+2-Sn+12=n(n+2)[(n+a)2-1]-(n+1)2(n+a)2
=-(n+a)2-n(n+2)<0.
即对n∈N*,a∈R,Sn•Sn+2-Sn+12<0成立,
所以?n∈N*,Sn,Sn+1,Sn+2不构成等比数列.
点评:本题考查等差、等比数列的前n项和公式,通项公式,以及利用等比中项的性质,考查分析问题解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网