题目内容
已知数列{an}的前n项和为Sn,且a1=4,Sn=nan+2-
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:b1=4,且bn+1=bn2-(n-1)bn-2(n∈N*),求证:bn>an(n≥2,n∈N*);
(3)求证:(1+
)(1+
)…(1+
)<
(n≥2,n∈N*).
| n(n-1) |
| 2 |
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:b1=4,且bn+1=bn2-(n-1)bn-2(n∈N*),求证:bn>an(n≥2,n∈N*);
(3)求证:(1+
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| bnbn-1 |
| 3 | e |
考点:数列的求和,数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知得an-an-1=1,(n≥3,n∈N*),a2=3,从而求出an=
.
(2)利用数学归纳法进行证明.
(3)设f(x)=ln(1+x)-x,则f′(x)=
-1=
<0,从而ln(1+x)<x,ln(1+
)<
<
=
-
,由此能证明(1+
)(1+
)…(1+
)<
(n≥2,n∈N*).
|
(2)利用数学归纳法进行证明.
(3)设f(x)=ln(1+x)-x,则f′(x)=
| 1 |
| 1+x |
| -x |
| 1+x |
| 1 |
| bnbn+1 |
| 1 |
| bnbn+1 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| bnbn-1 |
| 3 | e |
解答:
(1)解:当n≥3时,Sn=nan+2-
,①
Sn-1=(n-1)an-1+2-
,②
①-②,得an=nan-(n-1)an-1-
×2,
∴an-an-1=1,(n≥3,n∈N*),
∵a1+a2=2a2+2-1,
∴a2=3,
∴an=
.
(2)证明:①当n=2时,b2=b12-2=14>3=a2,不等式成立;
②假设当n=k(k≥2,k∈N*)时,不等式成立,即bk>k+1,
则当n=k+1时,
bk+1=bk2-(k-1)bk-2
=bk(bk-k+1)-2
>2bk-2>2(k+1)-2=2k≥k+2,
∴当n=k+1时,不等式也成立,
由①②,得bn>an(n≥2,n∈N*).
(3)证明:设f(x)=ln(1+x)-x,f′(x)=
-1=
<0,
∴f(x)在(0,+∞)上单调递减,f(x)<f(0),
∴ln(1+x)<x,
∵当n≥2,n∈N*时,
<
=
,
∴ln(1+
)<
<
=
-
,
∴ln(1+
)+ln(1+
)+…+ln(1+
)
<
-
+
-
+…+
-
=
-
<
,
∴(1+
)(1+
)…(1+
)<
(n≥2,n∈N*).
| n(n-1) |
| 2 |
Sn-1=(n-1)an-1+2-
| (n-1)(n-2) |
| 2 |
①-②,得an=nan-(n-1)an-1-
| n-1 |
| 2 |
∴an-an-1=1,(n≥3,n∈N*),
∵a1+a2=2a2+2-1,
∴a2=3,
∴an=
|
(2)证明:①当n=2时,b2=b12-2=14>3=a2,不等式成立;
②假设当n=k(k≥2,k∈N*)时,不等式成立,即bk>k+1,
则当n=k+1时,
bk+1=bk2-(k-1)bk-2
=bk(bk-k+1)-2
>2bk-2>2(k+1)-2=2k≥k+2,
∴当n=k+1时,不等式也成立,
由①②,得bn>an(n≥2,n∈N*).
(3)证明:设f(x)=ln(1+x)-x,f′(x)=
| 1 |
| 1+x |
| -x |
| 1+x |
∴f(x)在(0,+∞)上单调递减,f(x)<f(0),
∴ln(1+x)<x,
∵当n≥2,n∈N*时,
| 1 |
| bn |
| 1 |
| an |
| 1 |
| n+1 |
∴ln(1+
| 1 |
| bnbn+1 |
| 1 |
| bnbn+1 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴ln(1+
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| bnbn+1 |
<
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 3 |
| 1 |
| n+2 |
| 1 |
| 3 |
∴(1+
| 1 |
| b2b3 |
| 1 |
| b3b4 |
| 1 |
| bnbn-1 |
| 3 | e |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要注意数学归纳法、裂项求和法的合理运用.
练习册系列答案
相关题目
在区间(-∞,0)上是增函数的是( )
| A、y=1+x2 | ||
| B、y=1-lg(-x) | ||
C、y=
| ||
| D、y=2-x |