题目内容
4.箱中装有标号分别为1,2,3,4,5,6的六个球(除标号外完全相同),从箱中一次摸出两个球,记下号码并放回,若两球的号码之积是4的倍数,则获奖.现有4人参与摸球,恰好有3人获奖的概率是( )| A. | $\frac{624}{625}$ | B. | $\frac{96}{625}$ | C. | $\frac{16}{625}$ | D. | $\frac{4}{625}$ |
分析 先确定摸一次中奖的概率,4个人摸奖,相当于发生4次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.
解答 解:从6个球中摸出2个,共有C62=15种结果,
两个球的号码之积是4的倍数,共有(1,4)(3,4),(2,4)(2,6)(4,5)(4,6),
∴摸一次中奖的概率是$\frac{6}{15}$=$\frac{2}{5}$,
4个人摸奖,相当于发生4次试验,且每一次发生的概率是$\frac{2}{5}$,
∴有4人参与摸奖,恰好有3人获奖的概率是${C}_{4}^{3}$•${(\frac{2}{5})}^{3}$•$\frac{3}{5}$=$\frac{96}{625}$,
故选:B.
点评 本题考点是n次独立重复试验中恰好发生k次的概率,考查独立重复试验的概率,解题时主要是看清摸奖4次,相当于做了4次独立重复试验,利用公式做出结果,属于中档题.
练习册系列答案
相关题目
14.利用独立性检验来考虑高血压与患心脏病是否有关时,经计算,K2的观测值为8.3 则有( )
(参考值:P(K2≥10.828)≈0.001,P(K2≥6.635)≈0.010)
(参考值:P(K2≥10.828)≈0.001,P(K2≥6.635)≈0.010)
| A. | 有99%以上的把握认为“高血压与患心脏病无关” | |
| B. | 有99%以上的把握认为“高血压与患心脏病有关” | |
| C. | 在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关” | |
| D. | 在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关” |
19.已知F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点,G是C上一点,且满足$\frac{|G{F}_{1}|}{|G{F}_{2}|}$=9 则C的离心率的取值范围是( )
| A. | (1,$\frac{\sqrt{5}}{2}$) | B. | (1,$\frac{\sqrt{5}}{2}$] | C. | (1,$\frac{5}{4}$) | D. | (1,$\frac{5}{4}$] |
9.
如图所示,在扇形AOB中,∠AOB=$\frac{π}{3}$,圆C内切于扇形AOB,若随机在扇形AOB内投一点,则该点落在圆C外的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
2.侧棱长为2的正三棱柱,若其底面周长为9,则该正三棱柱的表面积是( )
| A. | $\frac{{9\sqrt{3}}}{2}$ | B. | $16+\frac{{9\sqrt{3}}}{2}$ | C. | $18+\frac{{9\sqrt{3}}}{2}$ | D. | $\frac{{9\sqrt{3}}}{4}$ |
3.正项等比数列{an}中,a4•a5=32,则log2a1+log2a2+…+log2a8的值为( )
| A. | 10 | B. | 20 | C. | 36 | D. | 128 |