题目内容

5.已知a>0且a≠1,函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$+4loga$\frac{1+x}{1-x}$,其中-1<x<1,则函数f(x)的最大值与最小值之和为0.

分析 运用函数的奇偶性的定义,可得f(x)为奇函数,即可得到f(x)的最值之和.

解答 解:依题意,函数f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$+4loga$\frac{1+x}{1-x}$,其中-1<x<1,
由f(-x)=$\frac{{a}^{-x}-1}{{a}^{-x}+1}$+4loga$\frac{1-x}{1+x}$=$\frac{1-{a}^{x}}{1+{a}^{x}}$-4loga$\frac{1+x}{1-x}$=-f(x),
即f(x)为奇函数,
故f(x)函数的图象关于原点对称,
故函数f(x)的最大值与最小值之和为0.
故答案为:0.

点评 本题考查函数的最值的求法,注意运用奇偶性,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网