题目内容

设f(x),g(x)都是定义在R上奇函数,且F(x)=3f(x)+5g(x)+2,若F(5)=-5,则F(-5)等于(  )
A、9B、7C、-7D、-3
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:利用奇函数的性质F(-5)+F(5)=4,即可得出.
解答: 解:∵f(x),g(x)都是定义在R上奇函数,且F(x)=3f(x)+5g(x)+2,
∴F(-x)+F(x)=3f(-x)+5g(-x)+2+3f(x)+5g(x)+2
=-3f(x)-5g(x)+2+3f(x)+5g(x)+2=4,
∴F(-5)+F(5)=4,
∴F(-5)=4-F(5)=9.
故选:A.
点评:本题考查了奇函数的性质,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网