题目内容
设A={-5,-4,-3,-2,-1,0,1,2,3,4,5},B={1,2,3},C={3,4,5},求:
(Ⅰ)B∪C,∁A(B∪C);
(Ⅱ)A∩CA(B∪C).
(Ⅰ)B∪C,∁A(B∪C);
(Ⅱ)A∩CA(B∪C).
考点:交、并、补集的混合运算
专题:集合
分析:(Ⅰ)由B与C求出B与C的并集,根据全集A,求出B与C并集的补集即可;
(Ⅱ)根据第一问确定出B与C并集的补集,求出与A的交集即可.
(Ⅱ)根据第一问确定出B与C并集的补集,求出与A的交集即可.
解答:
解:(Ⅰ)∵A={-5,-4,-3,-2,-1,0,1,2,3,4,5},B={1,2,3},C={3,4,5},
∴B∪C={1,2,3,4,5},∁A(B∪C)={-5,-4,-3,-2,-1,0};
(Ⅱ)由(Ⅰ)得:∁A(B∪C)={-5,-4,-3,-2,-1,0},
∴A∩∁A(B∪C)={-5,-4,-3,-2,-1,0}.
∴B∪C={1,2,3,4,5},∁A(B∪C)={-5,-4,-3,-2,-1,0};
(Ⅱ)由(Ⅰ)得:∁A(B∪C)={-5,-4,-3,-2,-1,0},
∴A∩∁A(B∪C)={-5,-4,-3,-2,-1,0}.
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
已知集合A={x|x2-6x-7<0},B={x|x2+2x-8≥0},则A∪∁RB=( )
| A、{x|-1<x<7} |
| B、{x|x>2或x<-4 |
| C、{x|-1<x<2} |
| D、{x|-4<x<7} |
已知集合M={x|x≤1},P={x|x>t},若M∩P≠∅,则实数t应该满足的条件是( )
| A、t>1 | B、t≥1 |
| C、t<1 | D、t≤1 |