题目内容
若集合M={x|
<1},则∁RM等于( )
| 1 |
| x |
| A、{x|x≤1} |
| B、{x|0<x≤1} |
| C、{x|0≤x≤1} |
| D、{x|x<1} |
考点:补集及其运算
专题:集合
分析:求出M中不等式的解集确定出M,根据全集R求出M的补集即可.
解答:
解:由M中不等式变形得:
-1<0,即
>0,
可得x(x-1)>0,
解得:x<0或x>1,即M={x|x<0或x>1},
则∁RM={x|0≤x≤1},
故选:C.
| 1 |
| x |
| x-1 |
| x |
可得x(x-1)>0,
解得:x<0或x>1,即M={x|x<0或x>1},
则∁RM={x|0≤x≤1},
故选:C.
点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.
练习册系列答案
相关题目
已知某四棱台的三视图如图所示,则该四棱台的体积是( )

A、
| ||
| B、4 | ||
C、
| ||
| D、6 |
将函数f(x)=cos2x的图象向右平移
个单位后得到函数g(x),则g(x)具有性质( )
| π |
| 4 |
A、最大值为a,图象关于直线x=
| ||||
B、在(0,
| ||||
C、在(-
| ||||
D、周期为π,图象关于点(
|
设M、N是两个集合,定义M*N={x|x∈M,且x∉N}.若M={y|y=log2(-x2-2x+3)},N={y|y=
,x∈[0,9]},则M*N=( )
| x |
| A、(-∞,0] |
| B、(-∞,0) |
| C、[0,2] |
| D、(-∞,0)∪(2,3] |
设点M(-3,2
)是抛物线y2=2px(p>0)准线上一点,过该抛物线焦点F的直线与它交于A、B两点,若
•
=0,则△MAB的面积为( )
| 3 |
| FM |
| FA |
A、32
| ||
B、20
| ||
C、24
| ||
D、16
|