ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¹ýµãP£¨-1£¬-2£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-1+tcos{{45}¡ã}}\\{y=-2+tsin{{45}¡ã}}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ•sin¦È•tan¦È=4m£¨m£¾0£©£¬Ö±ÏßlÓëÇúÏßCÏཻÓÚ²»Í¬µÄÁ½µãM£¬N£®£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©Èô|PM|=|MN|£¬ÇóʵÊýmµÄÖµ£®
·ÖÎö £¨1£©»¯ÇÐΪÏÒ£¬Á½±ßͬ³Ë¦Ñ£¬½áºÏ¹«Ê½x=¦Ñcos¦È£¬y=¦Ñsin¦È¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»Ö±½Ç°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt¿ÉµÃÆäÆÕͨ·½³Ì£»
£¨2£©ÁªÁ¢Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³Ì£¬ÇóµÃM¡¢NµÄºá×ø±ê£¬°Ñ|PM|=|MN|ת»¯Îªºá×ø±êµÄ¹ØÏµÇómÖµ£®
½â´ð ½â£º£¨1£©Óɦѕsin¦È•tan¦È=4m£¬µÃ¦Ñsin2¦È=4mcos¦È£¬¼´¦Ñ2sin2¦È=4m¦Ñcos¦È£¬![]()
¡ày2=4mx£¨m£¾0£©£¬
¹ÊÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪy2=4mx£¨m£¾0£©£¬
ÓÉ$\left\{{\begin{array}{l}{x=-1+tcos{{45}¡ã}}\\{y=-2+tsin{{45}¡ã}}\end{array}}\right.$£¬µÃ$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=-2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬¢Ù
ÏûÈ¥²ÎÊýtµÃ£ºx-y-1=0£¬
¹ÊÖ±ÏßlµÄÆÕͨ·½³ÌΪx-y-1=0£»
£¨2£©Èçͼ£¬ÁªÁ¢$\left\{\begin{array}{l}{y=x+1}\\{{y}^{2}=4mx}\end{array}\right.$£¬µÃx2+£¨2-4m£©x+1=0£®
½âµÃ£º${x}_{1}=2m-1-2\sqrt{{m}^{2}-m}$£¬${x}_{2}=2m-1+2\sqrt{{m}^{2}-m}$£®
ÓÉÌâÒâ¿ÉµÃ£º$2m-1-2\sqrt{{m}^{2}-m}+1$=$4\sqrt{{m}^{2}-m}$£¬½âµÃm=$\frac{9}{8}$£¨m£¾0£©£®
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì»¯ÆÕͨ·½³Ì£¬¿¼²éÁ˼òµ¥ÇúÏߵļ«×ø±ê·½³Ì£¬ÌåÏÖÁËÊýÐνáºÏµÄ½âÌâ˼Ïë·½·¨£¬ÊÇÖеµÌ⣮
| A£® | 16 | B£® | 32 | C£® | $\frac{64}{3}$ | D£® | $\frac{32}{3}$ |
| A£® | Èôm¡Î¦Á£¬n¡Í¦ÂÇÒ¦Á¡Í¦Â£¬Ôòm¡În | B£® | Èôm¡Í¦Á£¬n¡Í¦ÂÇÒ¦Á¡Í¦Â£¬Ôòm¡Ín | ||
| C£® | Èô¦Á¡Í¦Â£¬¦Á¡É¦Â=m£¬n¡Ím£¬Ôòn¡Í¦Â | D£® | Èô¦Á¡É¦Â=m£¬n?¦Á£¬m¡Ín£¬Ôò¦Á¡Í¦Â |
| A£® | $\frac{3}{2}$ | B£® | $\frac{5}{2}$ | C£® | $\frac{7}{2}$ | D£® | $\frac{7}{3}$ |