题目内容

已知集合A={x∈R|
x-4
x+1
≤0},B={x∈R|(x-2a)(x-a2-1)<0}.若A∩B=∅,则实数a的取值范围是(  )
A、(2,+∞)
B、[2,+∞)
C、{1}∪[2,+∞)
D、(1,+∞)
考点:交集及其运算
专题:集合
分析:求出A中不等式的解集确定出A,表示出B中不等式的解集,根据A与B的交集为空集,分两种情况考虑:B为空集与B不为空集,求出满足题意a的范围即可.
解答: 解:由A中不等式变形得:(x-4)(x+1)≤0,且x+1≠0,
解得:-1<x≤4,即A=(-1,4],
由B中不等式解得:2a<x<a2+1,即B=(2a,a2+1),
∵A∩B=∅,
∴分两种情况考虑:当B=∅时,2a=a2+1,即a=1;
当B≠∅时,则有2a≥4或a2+1≤-1,即a≥2,
综上,实数a的范围为{1}∪[2,+∞).
故选:C.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网