题目内容
18.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角θ为60°,求:(1)($\overrightarrow{a}$+2$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)的值;
(2)|2$\overrightarrow{a}$-$\overrightarrow{b}$|的值.
分析 (1)直接展开多项式乘多项式,然后代入向量的模及数量积得答案;
(2)由$|2\overrightarrow{a}-\overrightarrow{b}{|}^{2}=(2\overrightarrow{a}-\overrightarrow{b})^{2}$,展开后整理得答案.
解答 解:(1)∵|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角θ为60°,
∴$|\overrightarrow{a}{|}^{2}=16,|\overrightarrow{b}{|}^{2}=9$,$\overrightarrow{a}•\overrightarrow{b}=4×3cos60°=6$,
∴($\overrightarrow{a}$+2$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=$2|\overrightarrow{a}{|}^{2}+3\overrightarrow{a}•\overrightarrow{b}-2|\overrightarrow{b}{|}^{2}=2×16+3×6-2×9=32$;
(2)$|2\overrightarrow{a}-\overrightarrow{b}{|}^{2}=(2\overrightarrow{a}-\overrightarrow{b})^{2}=4|\overrightarrow{a}{|}^{2}-4\overrightarrow{a}•\overrightarrow{b}+|\overrightarrow{b}{|}^{2}$=4×16-4×6+9=49,
∴|2$\overrightarrow{a}$-$\overrightarrow{b}$|=7.
点评 本题考查平面向量的数量积运算,考查$|\overrightarrow{a}{|}^{2}={\overrightarrow{a}}^{2}$的应用,是中档题.
| A. | ?x∈R,x2+1≤0且x≤sinx | B. | ?x∈R,x2+1≤0或x≤sinx | ||
| C. | ?x0∈R,x${\;}_{0}^{2}$+1≤0且x0>sinx0 | D. | ?x0∈R,x${\;}_{0}^{2}$+1≤0或x0≤sinx0 |
| A. | [$\frac{1}{2}$,8] | B. | [$\frac{1}{2}$,3] | C. | [3,8] | D. | [$\frac{1}{2}$,+∞) |
| A. | 4 | B. | -4 | C. | 0 | D. | 2 |
| A. | {4,6} | B. | {4} | C. | {6} | D. | ∅ |