题目内容

已知等差数列{an}满足:a1+a5=14,a3+a9=26,其前n项和为Sn
(1)求an和Sn
(2)若bn=
1
2Sn+1-3an-3
(n∈N+),求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的前n项和
专题:等差数列与等比数列
分析:(1)利用等差数列的通项公式及其前n项和公式即可得出;
(2)利用“裂项求和”即可得出.
解答: 解:(1)设等差数列{an}的公差为d,∵a1+a5=14,a3+a9=26,
∴2a1+4d=14,2a1+10d=26,
解得a1=3,d=2,
∴an=3+2(n-1)=2n+1,
Sn=
n(3+2n+1)
2
=n2+2n.
(2)bn=
1
2Sn+1-3an-3
=
1
2[(n+1)2+2(n+1)]-3(2n+1)-3
=
1
2
(
1
n
-
1
n+1
)

∴Tn=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)
+…+(
1
n
-
1
n+1
)]

=
1
2
(1-
1
n+1
)

=
n
2n+2
点评:本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网