题目内容

已知函数f(x)=sin2x+sin2x+3cos2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数的单调减区间;
(Ⅲ)当x∈[-
π
4
π
4
]时,求函数f(x)的最小值.
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(Ⅰ)化简解析式可得f(x)=
2
sin(2x+
π
4
)
,即可求出f(x)的最小正周期.
(Ⅱ)由
π
2
+2kπ≤2x+
π
4
2
+2kπ
即可求得函数的单调减区间.
(Ⅲ)由已知可先求得2x+
π
4
的范围,即可求出函数f(x)的最小值.
解答: (本题10分)
解:(Ⅰ)∵f(x)=sin2x+2cos2x+1=sin2x+cos2x=
2
sin(2x+
π
4
)
,…(2分)
∴f(x)的最小正周期T=
ω
.…(4分)
(Ⅱ)由
π
2
+2kπ≤2x+
π
4
2
+2kπ
得 
π
8
+kπ≤x≤
8
+kπ
(k∈Z)
∴函数的单调减区间[
π
8
+kπ,
8
+kπ]
(k∈Z).…(7分)
(Ⅲ)由x∈[-
π
4
π
4
]⇒2x∈[-
π
2
π
2
]⇒2x+
π
4
∈[-
π
4
4
]

∴当2x+
π
4
=-
π
4
时,即x=-
π
4
时,f(x)取得最小值0.…(10分)
点评:本题主要考察了三角函数中的恒等变换应用,三角函数的图象与性质,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网