题目内容
已知等差数列{an}的公差为2,若a1,a4,a13成等比数列,数列{an}前O项和为Sn.
(Ⅰ)求an和Sn;
(Ⅱ)求数列{
}的前n项和Tn.
(Ⅰ)求an和Sn;
(Ⅱ)求数列{
| 1 |
| Sn |
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)利用等差数列与等比数列的通项公式即可得出;
(2)
=
=
(
-
),利用“裂项求和”即可得出.
(2)
| 1 |
| sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:
解:(1)∵a1,a4,a13成等比数列,
∴a42=a1a13,
即(a1+3d)2=a1(a1+12d),
又d=2,解得a1=3,
则an=3+2(n-1)=2n+1,
Sn=
=n(n+2).
(2)
=
=
(
-
),
∴Tn=
[(1-
)+(
-
)+…+(
+
)+(
+
)]
=
(1+
-
-
)
=
-
(
+
).
∴a42=a1a13,
即(a1+3d)2=a1(a1+12d),
又d=2,解得a1=3,
则an=3+2(n-1)=2n+1,
Sn=
| n(2n+1+3) |
| 2 |
(2)
| 1 |
| sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
点评:本题考查了等差数列与等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
已知圆C:(x-2)2+y2=1和两点A(0,a)与B(0,-a)(a>0),若圆C上存在一点P使得PA⊥PB,则a的取值范围是( )
| A、(0,3] |
| B、(0,1] |
| C、[1,3] |
| D、[3,+∞) |
如图所示的程序框图是给出计算
+
+
+…+
的值,则判断框内应填入的条件是( )

| 1 |
| 5 |
| 1 |
| 10 |
| 1 |
| 15 |
| 1 |
| 2015 |
| A、i≤403? |
| B、i<403? |
| C、i≤404? |
| D、i>404? |