题目内容

已知等差数列{an}的公差为2,若a1,a4,a13成等比数列,数列{an}前O项和为Sn
(Ⅰ)求an和Sn
(Ⅱ)求数列{
1
Sn
}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)利用等差数列与等比数列的通项公式即可得出;
(2)
1
sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
,利用“裂项求和”即可得出.
解答: 解:(1)∵a1,a4,a13成等比数列,
a42=a1a13
(a1+3d)2=a1(a1+12d)
又d=2,解得a1=3,
则an=3+2(n-1)=2n+1,
Sn=
n(2n+1+3)
2
=n(n+2).
(2)
1
sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

Tn=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n-1
+
1
n+1
)+(
1
n
+
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)
点评:本题考查了等差数列与等比数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网