题目内容

13.已知△ABC的内角A,B,C所对的边分别为a,b,c,若(3b-c)cosA=acosC,${S_△}_{ABC}=\sqrt{2}$,则$\overrightarrow{BA}•\overrightarrow{AC}$=(  )
A.$\sqrt{2}$B.2C.1D.-1

分析 先利用正弦定理及和角的三角函数,可求cosA的值,进而可求sinA,利用三角形的面积,求得bc.利用向量的数量积公式,即可得到结论.

解答 解:∵(3b-c)cosA=acosC,
∴由正弦定理,可得:3sinBcosA-sinCcosA=sinAcosC,
∴3sinBcosA=sinAcosC+sinCcosA,
∴3sinBcosA=sin(A+C)=sinB,
∴cosA=$\frac{1}{3}$,sinA=$\frac{2\sqrt{2}}{3}$,
∵S△ABC=$\sqrt{2}$,
∴$\frac{1}{2}$bcsinA=$\frac{\sqrt{2}}{3}$bc=$\sqrt{2}$,
∴bc=3,
∵cosA=$\frac{1}{3}$,
∴cos<$\overrightarrow{BA}$,$\overrightarrow{AC}$>=-$\frac{1}{3}$,
∴$\overrightarrow{BA}•\overrightarrow{AC}$=bccos<$\overrightarrow{BA}$,$\overrightarrow{AC}$>=-1.
故选:D.

点评 本题考查正弦定理,考查三角形的面积公式,解题的关键是利用正弦定理,进行边角互化,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网