题目内容

2.设f(x)是定义在R上的函数,其导函数为f′(x),若f(x)+f′(x)>1,f(0)=2016,则不等式exf(x)>ex+2015(其中e为自然对数的底数)的解集为{x丨x>0}.

分析 构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值即可求解.

解答 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)>ex+2015,
∴g(x)>2015,
又∵g(0)=e0f(0)-e0=2016-1=2015,
∴g(x)>g(0),
∴x>0,
则不等式的解集为:{x丨x>0}
故答案为:{x丨x>0}.

点评 本题考查函数单调性与奇偶性的结合,考查导数与函数的单调性的应用,导数与不等式的综合应用,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网