题目内容
13.(1)求椭圆C的方程;
(2)若点P是椭圆C上异于点A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.
分析 (1)动弦AB平行于x轴,|F1B|=|F2A|,且|F1A|+|F1B|=4,可得|F2A|+|F1A|=4=2a,解得a.又2c=2$\sqrt{2}$,b2=a2-c2,解出即可得出.
(2))F1$(-\sqrt{2},0)$,F2$(\sqrt{2},0)$.设A(x0,y0),B(-x0,y0),P(m,n)(P≠A,B),$\frac{{m}^{2}}{4}+\frac{{n}^{2}}{2}$=1,$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{2}$=1.直线PA方程:y-n=$\frac{{y}_{0}-n}{{x}_{0}-m}$(x-m),可得:M坐标.同理可得:N坐标.再利用斜率计算公式进而得出.
解答 解:(1)∵动弦AB平行于x轴,∴|F1B|=|F2A|,且|F1A|+|F1B|=4,
∴|F2A|+|F1A|=4=2a,解得a=2.
又2c=2$\sqrt{2}$,解得c=$\sqrt{2}$.
∴b2=a2-c2=2.
∴$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1.
(2))F1$(-\sqrt{2},0)$,F2$(\sqrt{2},0)$.
设A(x0,y0),B(-x0,y0),P(m,n)(P≠A,B),$\frac{{m}^{2}}{4}+\frac{{n}^{2}}{2}$=1,$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{2}$=1.
直线PA方程:y-n=$\frac{{y}_{0}-n}{{x}_{0}-m}$(x-m),可得:M$(0,\frac{n{x}_{0}-m{y}_{0}}{{x}_{0}-m})$.
直线PB方程:y-n=$\frac{{y}_{0}-n}{-{x}_{0}-m}$(x-m),可得:N$(0,\frac{n{x}_{0}+m{y}_{0}}{{x}_{0}+m})$.
∴k1=$\frac{n{x}_{0}-m{y}_{0}}{\sqrt{2}(m-{x}_{0})}$,k2=$\frac{n{x}_{0}+m{y}_{0}}{\sqrt{2}({x}_{0}+m)}$,
∴k1k2=$\frac{n{x}_{0}-m{y}_{0}}{\sqrt{2}(m-{x}_{0})}$×$\frac{n{x}_{0}+m{y}_{0}}{\sqrt{2}({x}_{0}+m)}$=$\frac{{n}^{2}{x}_{0}^{2}-{m}^{2}{y}_{0}^{2}}{2({m}^{2}-{x}_{0}^{2})}$=$\frac{(2-\frac{{m}^{2}}{2}){x}_{0}^{2}-{m}^{2}(2-\frac{{x}_{0}^{2}}{2})}{2({m}^{2}-{x}_{0}^{2})}$=-1为定值.
点评 本题考查了椭圆的定义标准方程及其性质、斜率计算公式,考查了推理能力与计算能力,属于难题.
| A. | (-1,2) | B. | [-1,2) | C. | (-1,+∞) | D. | [-1,+∞) |