题目内容
19.解方程$\root{3}{2+x}$=1-$\sqrt{x+1}$.分析 设$\root{3}{2+x}$=t,则x=t3-2,原方程可化为(t-1)(t2+2)=0,解得即可.
解答 解:设$\root{3}{2+x}$=t,则x=t3-2,
因此原方程变为t=1-$\sqrt{{t}^{3}-1}$,
整理得t3-1=(1-t)2,
即(t-1)(t2+2)=0,
解得t=1,
∴x=1-2=-1.
点评 本题考查了根式方程的解法,关键是换元.
练习册系列答案
相关题目
10.一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌x与身高y进行测量,得到数据(单位:cm)作为一个样本如下表示:
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程$\widehaty=\widehatbx+\widehata$;
(2)若某人的脚掌长为26.5cm,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}$,$\widehata=\overline y-\widehatb\overline x$,其中$\overline x$,$\overline y$为样本平均值.
参考数据:$\sum_{i=1}^{10}{({x_i}-\bar x)({y_i}-\bar y)}=577.5$,$\sum_{i=1}^{10}{{{({x_i}-\bar x)}^2}=82.5}$.
| 脚掌长( ) | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 身高( ) | 141 | 146 | 154 | 160 | 169 | 176 | 181 | 188 | 197 | 203 |
(2)若某人的脚掌长为26.5cm,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}$,$\widehata=\overline y-\widehatb\overline x$,其中$\overline x$,$\overline y$为样本平均值.
参考数据:$\sum_{i=1}^{10}{({x_i}-\bar x)({y_i}-\bar y)}=577.5$,$\sum_{i=1}^{10}{{{({x_i}-\bar x)}^2}=82.5}$.
7.在直角△ABC中,∠BCA=90°,CA=CB=1,P为AB边上的点$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,若$\overrightarrow{CP}•\overrightarrow{AB}≥\overrightarrow{PA}•\overrightarrow{PB}$,则λ的最小值是( )
| A. | 1 | B. | $\frac{{2-\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
14.已知函数f(x)是定义在[a-1,2a]上的偶函数,则a=( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 0 |
11.函数y=logax(x>0)且a≠1)的图象经过点(2$\sqrt{2}$,-1),函数y=bx(b>0)且b≠1)的图象经过点(1,2$\sqrt{2}$),则下列关系式中正确的是( )
| A. | a2>b2 | B. | 2a>2b | C. | ($\frac{1}{2}$)a>($\frac{1}{2}$)b | D. | a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$ |