题目内容

11.函数y=logax(x>0)且a≠1)的图象经过点(2$\sqrt{2}$,-1),函数y=bx(b>0)且b≠1)的图象经过点(1,2$\sqrt{2}$),则下列关系式中正确的是(  )
A.a2>b2B.2a>2bC.($\frac{1}{2}$)a>($\frac{1}{2}$)bD.a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$

分析 由已知条件,把点的坐标代入对应的函数解析式,求出a=$\frac{\sqrt{2}}{4}$、b=2$\sqrt{2}$,从而可得结论.

解答 解:∵函数y=logax(a>0且a≠1)的图象经过点(2$\sqrt{2}$,-1),
∴loga 2$\sqrt{2}$=-1,
∴a=$\frac{\sqrt{2}}{4}$.
由于函数y=bx(b>0且b≠1)的图象经过点(1,2$\sqrt{2}$),
故有b1=2$\sqrt{2}$,即 b=2$\sqrt{2}$.
故有b>a>0,
∴($\frac{1}{2}$)a>($\frac{1}{2}$)b
故选:C.

点评 本题主要考查对数函数的单调性和特殊点,指数函数的单调性和特殊点,求出a=$\frac{\sqrt{2}}{4}$、b=2$\sqrt{2}$解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网