题目内容

若x,y∈R,x>0,y>0,且x+y>2.求证:
1+x
y
1+y
x
中至少有一个小于2.
考点:反证法与放缩法
专题:证明题,反证法
分析:本题证明结论中结构较复杂,而其否定结构简单,故可用反证法证明其否定不成立,以此来证明结论成立.
解答: 证明:假设
1+x
y
1+y
x
都大于或等于2,
1+x
y
≥2且
1+y
x
≥2,
∵x,y∈R+,故可化为1+x≥2y且1+y≥2x,
两式相加,得x+y≤2,
与已知x+y>2矛盾.
∴假设不成立,即原命题成立.
点评:本考点是反证法证明命题,在作证明题时,对于一些条件相对较少或者证明时需要分类讨论的题型,最好试试用反证法能否证明问题.对于有些题如本题,用反证法证明可以大大降低题目的解决难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网