题目内容
10.下列各式有无最大值,若有,试求之.(1)y=3x(5-3x)(0<x<$\frac{5}{3}$);
(2)y=$\frac{{x}^{2}}{{x}^{4}+9}$(x≠0)
分析 (1)直接利用基本不等式求解即可;
(2)y=$\frac{{x}^{2}}{{x}^{4}+9}$=$\frac{1}{{x}^{2}+\frac{9}{{x}^{2}}}$,再利用基本不等式求解.
解答 解:(1)∵0<x<$\frac{5}{3}$,
∴3x>0,5-3x>0.
由基本不等式可得y=3x(5-3x)≤$[\frac{3x+(5-3x)}{2}]^{2}$=$\frac{25}{4}$,
当且仅当3x=5-3x,即x=$\frac{5}{6}$时,函数有最大值$\frac{25}{4}$;
(2)∵x≠0,∴y=$\frac{{x}^{2}}{{x}^{4}+9}$=$\frac{1}{{x}^{2}+\frac{9}{{x}^{2}}}$≤$\frac{1}{6}$,
当且仅当x2=$\frac{9}{{x}^{2}}$,即x=$±\sqrt{3}$时,函数有最大值$\frac{1}{6}$.
点评 本题考查基本不等式的运用,考查学生的计算能力,要注意基本不等式的使用条件.
练习册系列答案
相关题目
20.《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》[三三]:“今有宛田,下周三十步,径十六步.问为田几何?”译成现代汉语其意思为:有一块扇形的田,弧长30步,其所在圆的直径是16步,问这块田的面积是多少(平方步)?( )
| A. | 120 | B. | 240 | C. | 360 | D. | 480 |
18.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1的左右焦点分别为F1、F2,点P为双曲线上任意一点,点Q是以点P为圆心,|PF1|为半径的圆上的任意点,那么|QF2|( )
| A. | 有最小值8 | B. | 有最大值8 | C. | 有最小值4$\sqrt{5}$ | D. | 有最大值4$\sqrt{5}$ |
2.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点($\frac{a}{2}$,0)到直线l的距离d≥$\frac{1}{5}$c,则双曲线的离心率e的取值范围是( )
| A. | [$\frac{3}{2}$,2] | B. | [$\frac{\sqrt{5}}{2}$,2] | C. | [$\frac{3}{2}$,$\sqrt{5}$] | D. | [$\frac{\sqrt{5}}{2}$,$\sqrt{5}$] |
20.△ABC中,AC=BC=1,AC⊥BC,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+$\overrightarrow{b}$,则下列结论正确的是( )
| A. | |$\overrightarrow{a}$-$\overrightarrow{b}$|=1 | B. | ($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$ | C. | ($\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=$\frac{5}{2}$ | D. | ($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$=-2 |