题目内容

2.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点($\frac{a}{2}$,0)到直线l的距离d≥$\frac{1}{5}$c,则双曲线的离心率e的取值范围是(  )
A.[$\frac{3}{2}$,2]B.[$\frac{\sqrt{5}}{2}$,2]C.[$\frac{3}{2}$,$\sqrt{5}$]D.[$\frac{\sqrt{5}}{2}$,$\sqrt{5}$]

分析 求出直线l的方程,和点($\frac{a}{2}$,0)到直线l的距离,列出不等式得出a,b,c的关系,消去b,得出e的范围.

解答 解:直线l的方程为bx+ay-ab=0.
∴点($\frac{a}{2}$,0)到直线l的距离d=$\frac{\frac{1}{2}ab}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{ab}{2c}$≥$\frac{1}{5}c$.
∴5ab≥2c2,即25a2(c2-a2)≥4c4
∴4c4+25a4-25a2c2≤0,
∵e=$\frac{c}{a}$,
∴4e4-25e2+25≤0,解得$\frac{5}{4}≤{e}^{2}≤5$.
∴$\frac{\sqrt{5}}{2}≤e≤\sqrt{5}$.
故选:D.

点评 本题考查了双曲线的性质,不等式的解法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网