题目内容
已知函数f(x)是R上的偶函数,且f(4-x)=f(x),当x∈[0,2]时,f(x)=x2+2x,则f(2011)= .
考点:抽象函数及其应用,函数的值
专题:计算题,函数的性质及应用
分析:根据偶函数的定义和f(4-x)=f(x),得到f(x)是以4为最小正周期的函数.从而f(2011)=f(3),又f(3)=f(1)=3.
解答:
解:∵函数f(x)是R上的偶函数,
∴f(-x)=f(x),
∵f(4-x)=f(x),
∴f(4-x)=f(-x)即f(x+4)=f(x),
∴f(x)是以4为最小正周期的函数.
∴f(2011)=f(4×502+3)=f(3),
令x=1,则f(3)=f(1),
∵当x∈[0,2]时,f(x)=x2+2x,
∴f(1)=3,即f(2011)=3.
故答案为:3
∴f(-x)=f(x),
∵f(4-x)=f(x),
∴f(4-x)=f(-x)即f(x+4)=f(x),
∴f(x)是以4为最小正周期的函数.
∴f(2011)=f(4×502+3)=f(3),
令x=1,则f(3)=f(1),
∵当x∈[0,2]时,f(x)=x2+2x,
∴f(1)=3,即f(2011)=3.
故答案为:3
点评:本题考查抽象函数及运用,考查函数的周期性及运用,同时考查解决抽象函数的常用方法:赋值法,属于中档题.
练习册系列答案
相关题目
定义在R上的函数f(x)为奇函数,且f(x)关于x=1对称,且x∈(-1,0)时,f(x)=2x+
,则f(log220)=( )
| 1 |
| 5 |
| A、1 | ||
B、
| ||
| C、-1 | ||
D、-
|
下列函数中,既是奇函数,又是增函数的是( )
| A、f(x)=log2x |
| B、f(x)=x+1 |
| C、f(x)=x3 |
| D、f(x)=lg|x| |