ÌâÄ¿ÄÚÈÝ
ÈçͼչʾÁËÒ»¸öÇø¼ä£¨0£¬k£©£¨kÊÇÒ»¸ö¸ø¶¨µÄÕýʵÊý£©µ½ÊµÊý¼¯RµÄ¶ÔÓ¦¹ý³Ì£ºÇø¼ä£¨0£¬k£©ÖеÄʵÊým¶ÔÓ¦Ïß¶ÎABÉϵĵãM£¬Èçͼ1£»½«Ïß¶ÎABÍä³É°ëÔ²»¡£¬Ô²ÐÄΪH£¬Èçͼ2£»ÔÙ½«Õâ¸ö°ëÔ²ÖÃÓÚÖ±½Ç×ø±êϵÖУ¬Ê¹µÃÔ²ÐÄH×ø±êΪ£¨0£¬1£©£¬Ö±¾¶ABƽÐÐxÖᣬÈçͼ3£»ÔÚͼÐα仯¹ý³ÌÖУ¬Í¼1ÖÐÏß¶ÎAMµÄ³¤¶È¶ÔÓ¦ÓÚͼ3ÖеÄÔ²»¡AMµÄ³¤¶È£¬Ö±ÏßHMÓëÖ±Ïßy=-1ÏཻÓëµãN£¨n£¬-1£©£¬ÔòÓëʵÊým¶ÔÓ¦µÄʵÊý¾ÍÊÇn£¬¼Ç×÷n=f£¨m£©£®¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©f£¨
£©=6£»
£¨2£©º¯Êýn=f£¨m£©ÊÇÆæº¯Êý£»
£¨3£©n=f£¨m£©ÊǶ¨ÒåÓòÉϵĵ¥µ÷µÝÔöº¯Êý£»
£¨4£©n=f£¨m£©µÄͼÏó¹ØÓڵ㣨
£¬0£©¶Ô³Æ£»
£¨5£©·½³Ìf£¨m£©=2µÄ½âÊÇm=
k£®
ÆäÖÐÕýÈ·ÃüÌâÐòºÅΪ £®

£¨1£©f£¨
| k |
| 4 |
£¨2£©º¯Êýn=f£¨m£©ÊÇÆæº¯Êý£»
£¨3£©n=f£¨m£©ÊǶ¨ÒåÓòÉϵĵ¥µ÷µÝÔöº¯Êý£»
£¨4£©n=f£¨m£©µÄͼÏó¹ØÓڵ㣨
| k |
| 2 |
£¨5£©·½³Ìf£¨m£©=2µÄ½âÊÇm=
| 3 |
| 4 |
ÆäÖÐÕýÈ·ÃüÌâÐòºÅΪ
¿¼µã£º¸ù¾Ýʵ¼ÊÎÊÌâÑ¡Ôñº¯ÊýÀàÐÍ
רÌ⣺¼ÆËãÌâ,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£ºÓÉÌâÒ⣬Ê×ÏÈÃ÷È·¶ÔÓ¦¹ØÏµ£¬m±ä¶ÔÓ¦×ÅMHµÄÇãб½ÇµÄ±ä£¬´Ó¶øÇó³ön£»´Ó¶ø¶ÔÃüÌâÒÀ´ÎÅжϣ®
½â´ð£º
½â£º£¨1£©µ±m=
ʱ£¬»¡AM=
»¡AB£»
¹Ê¿ÉÖªHMµÄÇãб½ÇΪ45¡ã£»
¹ÊÖ±ÏßHMµÄ·½³ÌΪy=x+1£¬
Áîy=-1µÃ£¬x=-2£»
¹Êf£¨
£©=2£»¹Ê²»ÕýÈ·£»
£¨2£©º¯Êýn=f£¨m£©µÄ¶¨ÒåÓòΪ£¨0£¬k£©£¬¹Ê²»¿ÉÄÜÊÇÆæº¯Êý£¬¹Ê²»ÕýÈ·£»
£¨3£©ÓÉÌâÒâÖª£¬µ±m±ä´óʱ£¬Ö±ÏßHMÓëy=-1µÄ½»µãÏòÓÒÒÆ¶¯£¬
¼´nÒ²ÔÚ±ä´ó£¬¹Ên=f£¨m£©ÊǶ¨ÒåÓòÉϵĵ¥µ÷µÝÔöº¯Êý£»¹ÊÕýÈ·£»
£¨4£©µ±m=
ʱ£¬Ò×Öªn=0£»
µ±m¡Ù
ʱ£¬Ö±ÏßHMµÄÇãб½Ç¦È=
¦Ð£¬
¹ÊÖ±ÏßHMµÄ·½³ÌΪy=xtan
¦Ð+1£¬
Áîy=-1µÃ£¬x=-
£»
¹Ên=-
£»¼´µã£¨m£¬-
£©ÔÚn=f£¨m£©µÄͼÏóÉÏ£¬
m¹ØÓÚ
¶Ô³ÆµÄÊýÊÇk-m£¬´ËʱֱÏßHMµÄÇãб½ÇΪ¦Ð-
¦Ð£»
Ö±ÏßHMµÄ·½³ÌΪy=xtan£¨¦Ð-
¦Ð£©+1=-xtan
¦Ð+1£»
Áîy=-1µÃ£¬x=
£¬
¹Ên=
£»
¹Êµã£¨k-m£¬
£©ÔÚn=f£¨m£©µÄͼÏóÉÏ£»
¹Ên=f£¨m£©µÄͼÏó¹ØÓڵ㣨
£¬0£©¶Ô³Æ£»¹ÊÕýÈ·£»
£¨5£©ÓÉf£¨m£©=2µÃ£¬Ö±ÏßHM¹ýµã£¨0£¬1£©£¬£¨2£¬-1£©£»
¹ÊÖ±ÏßHMµÄбÂÊΪ-1£»
¹ÊÖ±ÏßHMµÄÇãб½ÇΪ
¦Ð£»
¼´
¦Ð=
¦Ð£»¹Êm=
k£®
¹ÊÕýÈ·£»
¹Ê´ð°¸Îª£º£¨3£©£¬£¨4£©£¬£¨5£©£®
| k |
| 4 |
| 1 |
| 4 |
¹Ê¿ÉÖªHMµÄÇãб½ÇΪ45¡ã£»
¹ÊÖ±ÏßHMµÄ·½³ÌΪy=x+1£¬
Áîy=-1µÃ£¬x=-2£»
¹Êf£¨
| k |
| 4 |
£¨2£©º¯Êýn=f£¨m£©µÄ¶¨ÒåÓòΪ£¨0£¬k£©£¬¹Ê²»¿ÉÄÜÊÇÆæº¯Êý£¬¹Ê²»ÕýÈ·£»
£¨3£©ÓÉÌâÒâÖª£¬µ±m±ä´óʱ£¬Ö±ÏßHMÓëy=-1µÄ½»µãÏòÓÒÒÆ¶¯£¬
¼´nÒ²ÔÚ±ä´ó£¬¹Ên=f£¨m£©ÊǶ¨ÒåÓòÉϵĵ¥µ÷µÝÔöº¯Êý£»¹ÊÕýÈ·£»
£¨4£©µ±m=
| k |
| 2 |
µ±m¡Ù
| k |
| 2 |
| m |
| k |
¹ÊÖ±ÏßHMµÄ·½³ÌΪy=xtan
| m |
| k |
Áîy=-1µÃ£¬x=-
| 2 | ||
tan
|
¹Ên=-
| 2 | ||
tan
|
| 2 | ||
tan
|
m¹ØÓÚ
| k |
| 2 |
| m |
| k |
Ö±ÏßHMµÄ·½³ÌΪy=xtan£¨¦Ð-
| m |
| k |
| m |
| k |
Áîy=-1µÃ£¬x=
| 2 | ||
tan
|
¹Ên=
| 2 | ||
tan
|
¹Êµã£¨k-m£¬
| 2 | ||
tan
|
¹Ên=f£¨m£©µÄͼÏó¹ØÓڵ㣨
| k |
| 2 |
£¨5£©ÓÉf£¨m£©=2µÃ£¬Ö±ÏßHM¹ýµã£¨0£¬1£©£¬£¨2£¬-1£©£»
¹ÊÖ±ÏßHMµÄбÂÊΪ-1£»
¹ÊÖ±ÏßHMµÄÇãб½ÇΪ
| 3 |
| 4 |
¼´
| m |
| k |
| 3 |
| 4 |
| 3 |
| 4 |
¹ÊÕýÈ·£»
¹Ê´ð°¸Îª£º£¨3£©£¬£¨4£©£¬£¨5£©£®
µãÆÀ£º±¾Ì⿼²éÁËѧÉú¶ÔÓÚж¨ÒåµÄ½ÓÊÜÄÜÁ¦£¬Í¬Ê±¿¼²éÁËÓ³ÉäµÄ±äÐÎÓ¦Óã¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Éè·Ç¸ºÊµÊýx£¬yÂú×ãx-y+1¡Ý0ÇÒ3x+y-3¡Ü0£¬Ôò4x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
| A¡¢1 | ||
B¡¢
| ||
C¡¢
| ||
| D¡¢4 |
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|