ÌâÄ¿ÄÚÈÝ
13£®Êг¡ÉÏÓÐÒ»ÖÖÐÂÐ͵ÄÇ¿Á¦Ï´Ò·ۣ¬ÌصãÊÇÈ¥ÎÛËٶȿ죬ÒÑ֪ÿͶ·Åa£¨1¡Üa¡Ü4ÇÒa¡ÊR£©¸öµ¥Î»µÄÏ´Ò·ÛÒºÔÚÒ»¶¨Á¿Ë®µÄÏ´Ò»úÖУ¬ËüÔÚË®ÖÐÊͷŵÄŨ¶Èy£¨¿Ë/Éý£©Ëæ×Åʱ¼äx£¨·ÖÖÓ£©±ä»¯µÄº¯Êý¹ØÏµÊ½½üËÆÎªy=af£¨x£©£¬ÆäÖÐf£¨x£©=$\left\{\begin{array}{l}\frac{16}{8-x}-1£¬0¡Üx¡Ü4\\ 5-\frac{1}{2}x£¬4£¼x¡Ü10\end{array}$£¬Èô¶à´ÎͶ·Å£¬Ôòijһʱ¿ÌË®ÖеÄÏ´ÒÂҺŨ¶ÈΪÿ´ÎͶ·ÅµÄÏ´ÒÂÒºÔÚÏàӦʱ¿ÌËùÊͷŵÄŨ¶ÈÖ®ºÍ£¬¸ù¾Ý¾Ñ飬µ±Ë®ÖÐÏ´ÒÂÒºµÄŨ¶È²»µÍÓÚ4£¨¿Ë/Éý£©Ê±£¬Ëü²ÅÄÜÆðÓÐЧȥÎÛµÄ×÷Ó㮣¨1£©ÈôֻͶ·ÅÒ»´Î4¸öµ¥Î»µÄÏ´ÒÂÒº£¬ÔòÓÐЧȥÎÛʱ¼ä¿ÉÄܴX·ÖÖÓ£¿
£¨2£©ÈôÏÈͶ·Å2¸öµ¥Î»µÄÏ´ÒÂÒº£¬6·ÖÖÓºóͶ·Åa¸öµ¥Î»µÄÏ´ÒÂÒº£¬ÒªÊ¹½ÓÏÂÀ´µÄ4·ÖÖÓÖÐÄܹ»³ÖÐøÓÐЧȥÎÛ£¬ÊÔÇóaµÄ×îСֵ£¨¾«È·µ½0.1£¬²Î¿¼Êý¾Ý£º$\sqrt{2}$È¡1.4£©
·ÖÎö £¨1£©ÓÉÌâÒâÖªÓÐЧȥÎÛÂú×ãy¡Ý4£¬Ôò$\left\{\begin{array}{l}0¡Üx¡Ü4\\ 4£¨\frac{16}{8-x}-1£©¡Ý4\end{array}\right.$»ò$\left\{\begin{array}{l}4£¼x¡Ü10\\ 4£¨5-\frac{1}{2}x£©¡Ý4\end{array}\right.$£¬½âµÃ´ð°¸£»
£¨2£©${y_1}=2£¨5-\frac{1}{2}{x_1}£©$£¬£¨6¡Üx1¡Ü10£©£¬${y_2}=a£¨\frac{16}{{8-{x_2}}}-1£©$£¬£¨0¡Üx2¡Ü4£©·Ö±ðÇó³ö×îÖµ£¬±È½Ïºó¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâÖªÓÐЧȥÎÛÂú×ãy¡Ý4£¬
Ôò$\left\{\begin{array}{l}0¡Üx¡Ü4\\ 4£¨\frac{16}{8-x}-1£©¡Ý4\end{array}\right.$»ò$\left\{\begin{array}{l}4£¼x¡Ü10\\ 4£¨5-\frac{1}{2}x£©¡Ý4\end{array}\right.$
µÃ0¡Üx¡Ü8£¬ËùÒÔÓÐЧȥÎÛʱ¼ä¿ÉÄÜ´ï8·ÖÖÓ£®
£¨2£©${y_1}=2£¨5-\frac{1}{2}{x_1}£©$£¬£¨6¡Üx1¡Ü10£©£¬${y_2}=a£¨\frac{16}{{8-{x_2}}}-1£©$£¬£¨0¡Üx2¡Ü4£©
Áîx1=6+x2£¬x2¡Ê[0£¬4]£¬${y_1}+{y_2}=2£¨2-\frac{x_2}{2}£©+a£¨\frac{16}{{8-{x_2}}}-1£©¡Ý4$£¬£¨0¡Üx2¡Ü4£©
¡à$a¡Ý{x_2}•\frac{{8-{x_2}}}{{8+{x_2}}}$£¬ÈôÁît=8+x2£¬t¡Ê[8£¬12]£¬$a¡Ý-£¨t+\frac{128}{t}£©+24$£¬
ÓÖ$-£¨t+\frac{128}{t}£©+24¡Ü24-16\sqrt{2}¡Ö1.6$£¬
ËùÒÔaµÄ×îСֵΪ1.6£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǷֶκ¯ÊýµÄÓ¦Ó㬷ÖÀàÌÖÂÛ˼Ï룬º¯ÊýÄ£Ð͵ÄÑ¡ÔñÓëÓ¦Óã¬ÄѶÈÖеµ£®
| A£® | £¨©Vp£©¡Äq | B£® | p¡Äq | C£® | p¡Å£¨©Vq£© | D£® | £¨©Vp£©¡Ä£¨©Vq£© |
| A£® | 120¡ã | B£® | 90¡ã | C£® | 60¡ã | D£® | 45¡ã |
| A£® | $\frac{¦Ð}{6}$ | B£® | -$\frac{¦Ð}{6}$ | C£® | $\frac{¦Ð}{3}$ | D£® | -$\frac{¦Ð}{3}$ |