题目内容

设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,且满足Tn=
3
2
Sn-3n,n∈N*
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)记bn=
2an
(an-2)2
,n∈N*,求证:b1+b2+…+bn<1.
考点:数列的求和,数列递推式
专题:综合题
分析:(1)将n=1代入Tn=
3
2
Sn-3n,求出a1的值;
(2)根据当n≥2时,Sn=Tn-Tn-1求出Sn=
3
2
an-3
仿写作差得出数列{an}是以6为首项,3为公比的等比数列,求出通项公式;
(3)当n=1时,b1=
3
4
<1
;当n≥2时,bn=
2an
(an-2)2
=
3n
(2×3n-2)2
(    )
(    )
=
3n
(3n-1)2
3n
(3n-1)(3n-3)
=
1
2
(
1
3n-1-1
-
1
3n-1
)
通过裂项相消证出不等式.
解答: 解:(1)当n=1时,T1=
3
2
S1-3

∵T1=S1=a1
,∴a1=
3
2
a1-3

解得a1=6
(2)当n≥2时,Sn=Tn-Tn-1=
3
2
Sn-3n-[
3
2
Sn-1-3(n-1)]=
3
2
Sn-
3
2
Sn-1-3

Sn=
3
2
an-3①

Sn-1=
3
2
an-1-3①

由②-①得an=3an-1
∴数列{an}是以6为首项,3为公比的等比数列
,∴an=6•3n-1=2•3n
(3)当n=1时,b1=
3
4
<1

当n≥2时,bn=
2an
(an-2)2
=
3n
(2×3n-2)2
=
3n
(3n-1)2
3n
(3n-1)(3n-3)

=
3n-1
(3n-1)(3n-1-1)
=
1
2
[
(3n-1)-(3n-1-1)
(3n-1)(3n-1-1)
]
=
1
2
(
1
3n-1-1
-
1
3n-1
)

∴b1+b2+…+bnb1+
1
2
(
1
31-1
-
1
32-1 
)
+
1
2
(
1
32-1
-
1
33-1 
)
+…+
1
2
(
1
3n-1-1
-
1
3n-1
)

3
4
+
1
2
(
1
3-1
-
1
3n-1
)<1
点评:本题考查数列通项的求法、考查了放缩法证明不等式及裂项相消的数列求和的方法;属于一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网