题目内容

计算定积分:
(1)∫01e2xdx;
(2)
1
6
-
1
6
cos2xdx.
考点:定积分
专题:导数的综合应用
分析:找出被积函数的原函数,代入积分上限和下限求值.
解答: 解:(1)∫01e2xdx=(
1
2
e2x
|
1
0
=
1
2
e2-
1
2

(2)
1
6
-
1
6
cos2xdx=(
1
2
sin2x)
|
1
6
-
1
6
=sin
1
3
点评:本题考查了定积分的计算;关键是正确找出被积函数的原函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网