题目内容
9.已知对任意的实数m,直线x+y+m=0都不与曲线f(x)=x3-3ax(a∈R)相切.则实数a的取值范围为( )| A. | $(-∞,-\frac{1}{3})$ | B. | $(-\frac{1}{3},+∞)$ | C. | $(\frac{1}{3},+∞)$ | D. | $(-∞,\frac{1}{3})$ |
分析 直线x+y+m=0得直线斜率k=-1,若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则等价为f′(x)≠-1,恒成立,解不等式即可得实数a的取值范围.
解答 解:函数的导数f′(x)=3x2-3a≥-3a,
若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则直线的斜率为-1,
等价为f(x)′=3x2-3a≠-1,
又抛物线开口向上则必在直线上面,即最小值大于直线斜率,
则当x=0时取最小值,-3a>-1,
则a的取值范围为a<$\frac{1}{3}$,
故实数a的取值范围是(-∞,$\frac{1}{3}$),
故选:D
点评 本题主要考查导数的几何意义,利用一元二次函数的性质是解决本题的关键.
练习册系列答案
相关题目
20.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制,各等级划分标准见表,规定:A,B,C三级为合格等级,D为不合格等级.
为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图所示,样本中分数在80分及以上的所有数据的茎叶图如图所示.

(1)求n和频率分布直方图中的x,y的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;
(3)在选取的样本中,从A,C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.
| 百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
| 等级 | A | B | C | D |
(1)求n和频率分布直方图中的x,y的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;
(3)在选取的样本中,从A,C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.
4.若复数$z=\frac{1-3i}{1+i}$,则|z+1|=( )
| A. | 3 | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{5}$ |
14.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B的子集共有( )
| A. | 2个 | B. | 4个 | C. | 8个 | D. | 16个 |
19.设全集U=R,集合A={x|x≥2},B={x|0≤x<5},则集合A∩B=( )
| A. | {x|0≤x} | B. | {x|0<x≤2} | C. | {x|0≤x<2} | D. | {x|2≤x<5} |