题目内容
9.在等腰梯形ABCD中,已知AB∥DC,AB=2CD=4.若$\overrightarrow{AC}$•$\overrightarrow{BD}$=-1,则$\overrightarrow{AD}$•$\overrightarrow{BC}$=7.分析 以A为原点,AB方向为x轴正方向,建立平面直角坐标系,设出D、C的坐标,并求出D、C坐标,容易得出答案.
解答 解:如图所示,以A为原点,AB方向为x轴正方向,建立平面直角坐标系,![]()
有A(0,0),B(4,0),有D的横坐标为1,C的横坐标为3,
设D(1,m),C(3,m),
$\overrightarrow{AC}$=(3,m),$\overrightarrow{BD}$=(-3,m),
$\overrightarrow{AC}$•$\overrightarrow{BD}$=-1=m2-9,则m=2$\sqrt{2}$,
$\overrightarrow{AD}$=(1,2$\sqrt{2}$),$\overrightarrow{BC}$=(-1,2$\sqrt{2}$),
∴$\overrightarrow{AD}$•$\overrightarrow{BC}$=8-1=7.
点评 本题考查了平面向量的数量积运算与应用问题,是综合性题目.
练习册系列答案
相关题目
20.高考结束后高三的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置,)其中一班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一班的乘坐方式共有( )
| A. | 18种 | B. | 24种 | C. | 48种 | D. | 36种 |
4.下列说法错误的是( )
| A. | 命题,“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0“ | |
| B. | 对于命题p:?x0∈R,x02+x0+1<0,则¬p:?x∈R,x2+x+1≥0 | |
| C. | 若m,n∈R,“lnm<lnn“是“em<en”的必要不充分条件 | |
| D. | 若p∨q为假命题,则p,q均为假命题 |
9.已知命题p:?x0∈R,使2${\;}^{{x}_{0}}$+2${\;}^{-{x}_{0}}$=1;命题q:?x∈R,都有lg(x2+2x+3)>0.下列结论中正确的是( )
| A. | 命题“¬p∧q”是真命题 | B. | 命题“p∧¬q”是真命题 | ||
| C. | 命题“p∧q”是真命题 | D. | 命题“¬p∨¬q”是假命题 |