题目内容
圆x2+y2+4y=0的半径和圆心坐标分别为 ( )
| A、圆心为(0,2),半径为4 |
| B、圆心为(0,-2),半径为4 |
| C、圆心为(0,2),半径为2 |
| D、圆心为(0,-2),半径为2 |
考点:圆的一般方程
专题:计算题,直线与圆
分析:把圆的方程化为标准形式,可得圆心坐标和半径.
解答:
解:圆x2+y2+4y=0的标准方程为x2+(y+2)2=4,表示以(0,-2)为圆心、半径等于2的圆,
故选:D.
故选:D.
点评:本题主要考查圆的标准方程的特征,属于基础题.
练习册系列答案
相关题目
下列不是二项式(x+1)8展开式的一项是( )
| A、8x |
| B、28x3 |
| C、56x3 |
| D、70x4 |
已知向量
与向量
满足|
|=1,|
|=2,
⊥(
-
),则
与
的夹角是( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知A={x|x-2>0},B={x|1-x<0},则“x∈A”是“x∈B”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
| π |
| 2 |
A、
| ||
B、
| ||
C、
| ||
D、
|
下列命题中,真命题是( )
| A、?x0∈R,e x0≤0 | ||
| B、?x∈R,3x>x3 | ||
C、“a-b=0”的充分不必要条件是“
| ||
| D、“x>a2+b2”是“x>2ab”的必要不充分条件 |