ÌâÄ¿ÄÚÈÝ
ÈôÊýÁÐ{an}Âú×㣺´æÔÚÕýÕûÊýT£¬¶ÔÓÚÈÎÒâÕýÕûÊýn¶¼ÓÐan+T=an³ÉÁ¢Ôò³ÆÊýÁÐ{an}ΪÖÜÆÚÊýÁУ¬ÖÜÆÚΪT£¬ÒÑÖªÊýÁÐ{an}Âú×ãa1=m£¨m£¾0£©£¬an+1=
Ôò£¬ÓÐÏÂÁнáÂÛ£º
¢ÙÈôa3=4£¬Ôòm¿ÉÒÔÈ¡3¸ö²»Í¬µÄÖµ£»
¢ÚÈôm=
£¬ÔòÊýÁÐ{an}ÊÇÖÜÆÚΪ3µÄÊýÁУ»
¢Û¶ÔÈÎÒâµÄT¡ÊN*ÇÒT¡Ý2£¬´æÔÚm£¾1£¬Ê¹µÃ{an}ÊÇÖÜÆÚΪTµÄÊýÁУ»
¢Ü´æÔÚm¡ÊQÇÒm¡Ý2£¬Ê¹µÃÊýÁÐ{an}ÊÇÖÜÆÚÊýÁУ®
ÆäÖÐÕýÈ·µÄ½áÂÛÓÐ £®
|
¢ÙÈôa3=4£¬Ôòm¿ÉÒÔÈ¡3¸ö²»Í¬µÄÖµ£»
¢ÚÈôm=
| 2 |
¢Û¶ÔÈÎÒâµÄT¡ÊN*ÇÒT¡Ý2£¬´æÔÚm£¾1£¬Ê¹µÃ{an}ÊÇÖÜÆÚΪTµÄÊýÁУ»
¢Ü´æÔÚm¡ÊQÇÒm¡Ý2£¬Ê¹µÃÊýÁÐ{an}ÊÇÖÜÆÚÊýÁУ®
ÆäÖÐÕýÈ·µÄ½áÂÛÓÐ
¿¼µã£ºÊýÁеĺ¯ÊýÌØÐÔ
רÌ⣺º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º¢ÙÈôa3=4£¬ÀûÓÃan+1=
£¬·Ö±ð¶Ôa2£¬a1ÌÖÂÛ¼´¿ÉµÃ³ö£»
¢ÚÈôm=
£¬¿ÉµÃa2£¬a3£¬a4£¬¡£¬¿ÉµÃan+3=an£®¼´¿ÉÅжϳöÊýÁÐ{an}ÊÇ·ñΪÖÜÆÚÊýÁУ®
¢ÛÓÉ¢Ù¿ÉÖªÕýÈ·£®
¢Ü¿ÉÓ÷´Ö¤·¨Ö¤Ã÷²»ÕýÈ·£®
|
¢ÚÈôm=
| 2 |
¢ÛÓÉ¢Ù¿ÉÖªÕýÈ·£®
¢Ü¿ÉÓ÷´Ö¤·¨Ö¤Ã÷²»ÕýÈ·£®
½â´ð£º
½â£º¢ÙÈôa3=4£¬¡ßan+1=
£¬
¡àµ±a2£¾1ʱ£¬a2-1=a3=4£¬½âµÃa2=5£®µ±a1=m£¾1ʱ£¬a1-1=a2=5£¬½âµÃa1=6£»µ±0£¼a1=m£¼1ʱ£¬
=a2=5£¬½âµÃa1=
£®
µ±0£¼a2£¼1ʱ£¬
=a3=4£¬½âµÃa2=
£®µ±a1=m£¾1ʱ£¬a1-1=a2=
£¬½âµÃa1=
£®µ±0£¼a1=m£¼1ʱ£¬
=a2=
£¬½âµÃa1=4£¬´Ëʱ²»·ûºÏÌõ¼þ£¬Ó¦ÉáÈ¥£®
×ÛÉϿɵãºm¿ÉÒÔÈ¡3¸ö²»Í¬µÄÖµ£º6£¬
£¬
£®Òò´Ë¢ÙÕýÈ·£®
¢ÚÈôm=
£¬Ôòa2=a1-1=
-1£¬¡àa3=
=
=
+1£¬¡àa4=a3-1=
£®
¡£¬¿ÉµÃan+3=an£®¡àÊýÁÐ{an}ÊÇÖÜÆÚΪ3µÄÊýÁУ¬ÕýÈ·£®
¢Û¶ÔÈÎÒâµÄT¡ÊN*ÇÒT¡Ý2£¬´æÔÚm£¾1£¬Ê¹µÃ{an}ÊÇÖÜÆÚΪTµÄÊýÁУ¬ÓÉ¢Ù¿ÉÖªÕýÈ·£®
¢Ü¼ÙÉè´æÔÚm¡ÊQÇÒm¡Ý2£¬Ê¹µÃÊýÁÐ{an}ÊÇÖÜÆÚÊýÁУ®Ôòµ±m=2ʱ£¬a2=a1-1=1£¬¡àa3=
=1=¡=an£¨n¡Ý2£©£¬´ËʱÊýÁÐ{an}²»ÊÇÖÜÆÚÊýÁУ®
µ±m£¾2ʱ£¬µ±0£¼m-k¡Ü1ʱ£¬ak+1=a1-k=m-k£®¡àak+2=
=
£¾1£®Èôak+2=ai£¬1¡Üi¡Ük+1£¬Ôò
=m-£¨i-1£©£¬»¯Îªm2-m£¨k+i-1£©+ki-k-1=0£¬Ôò¡÷=£¨k+i-1£©2-4£¨ki-k-1£©²»ÎªÆ½·½Êý£¬Òò´Ë¼ÙÉè²»ÕýÈ·£®¿ÉÖª¢Ü²»ÕýÈ·£®
×ÛÉÏ¿ÉÖª£ºÖ»ÓТ٢ڢÛÕýÈ·£®
|
¡àµ±a2£¾1ʱ£¬a2-1=a3=4£¬½âµÃa2=5£®µ±a1=m£¾1ʱ£¬a1-1=a2=5£¬½âµÃa1=6£»µ±0£¼a1=m£¼1ʱ£¬
| 1 |
| a1 |
| 1 |
| 5 |
µ±0£¼a2£¼1ʱ£¬
| 1 |
| a2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 5 |
| 4 |
| 1 |
| a1 |
| 1 |
| 4 |
×ÛÉϿɵãºm¿ÉÒÔÈ¡3¸ö²»Í¬µÄÖµ£º6£¬
| 1 |
| 5 |
| 5 |
| 4 |
¢ÚÈôm=
| 2 |
| 2 |
| 1 |
| a2 |
| 1 | ||
|
| 2 |
| 2 |
¡£¬¿ÉµÃan+3=an£®¡àÊýÁÐ{an}ÊÇÖÜÆÚΪ3µÄÊýÁУ¬ÕýÈ·£®
¢Û¶ÔÈÎÒâµÄT¡ÊN*ÇÒT¡Ý2£¬´æÔÚm£¾1£¬Ê¹µÃ{an}ÊÇÖÜÆÚΪTµÄÊýÁУ¬ÓÉ¢Ù¿ÉÖªÕýÈ·£®
¢Ü¼ÙÉè´æÔÚm¡ÊQÇÒm¡Ý2£¬Ê¹µÃÊýÁÐ{an}ÊÇÖÜÆÚÊýÁУ®Ôòµ±m=2ʱ£¬a2=a1-1=1£¬¡àa3=
| 1 |
| a2 |
µ±m£¾2ʱ£¬µ±0£¼m-k¡Ü1ʱ£¬ak+1=a1-k=m-k£®¡àak+2=
| 1 |
| ak+1 |
| 1 |
| m-k |
| 1 |
| m-k |
×ÛÉÏ¿ÉÖª£ºÖ»ÓТ٢ڢÛÕýÈ·£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁеÄÖÜÆÚÐÔ¡¢·ÖÀàÌÖÂÛ˼Ïë·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿