题目内容

设集合S={x|x2-2x-3≤0},T={x|-1<x≤4,x∈Z},则S∩T等于  (  )
A、{x|0<x≤3,x∈Z}
B、{x|0≤x≤4,x∈Z}
C、{x|-1≤x≤0,x∈Z}
D、{x|-1<x≤3,x∈Z}
考点:交集及其运算
专题:集合
分析:先利用一元二次不等式的知识求出集合S,由此能求出S∩T.
解答: 解:∵集合S={x|x2-2x-3≤0}={x|-1≤x≤3},
T={x|-1<x≤4,x∈Z},
∴S∩T={x|-1<x≤3,x∈Z}.
故选:D.
点评:本题考查集合的交集及其运算,是基础题,解题时要认真审题,注意一元二次不等式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网