题目内容
15.已知a>0,设p:实数x满足x2-4ax+3a2<0,q:实数x满足(x-3)2<1.(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.
分析 (1)若a=1,分别求出p,q成立的等价条件,利用p∧q为真,求实数x的取值范围;
(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a的取值范围.
解答 解:(1)由x2-4ax+3a2<0得(x-a)(x-3a)<0
当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.…(2分)
由(x-3)2<1,得2<x<4,
即q为真时实数x的取值范围是2<x<4.…(4分)
因为p∧q为真,所以p真且q真,
所以实数x的取值范围是2<x<3.…(6分)
(2)由x2-4ax+3a2<0得(x-a)(x-3a)<0,
所以,p为真时实数x的取值范围是a<x<3a.…(8分)
因为?p是?q的充分不必要条件,即q是p的充分不必要条件
所以a≤2且且4≤3a …(10分)
所以实数a的取值范围为:$[{\frac{4}{3},2}]$. …(12分)
点评 本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键.
练习册系列答案
相关题目
5.若圆(x-1)2+(y+1)2=r2上有且只有两个点到直线x-y+1=0的距离等于$\frac{{\sqrt{2}}}{2}$,则半径r的取值范围是( )
| A. | $(\sqrt{2},2\sqrt{2}]$ | B. | $(\sqrt{2},2\sqrt{2})$ | C. | $[\sqrt{2},2\sqrt{2})$ | D. | $[\sqrt{2},2\sqrt{2}]$ |
3.设x∈R,则“|x+1|<1”是“x2+x-2<0”的( )条件.
| A. | 充分而不必要 | B. | 必要而不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
7.现在颈椎病患者越来越多,甚至大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在遂宁市中心医院随机的对入院的50名大学生进行了问卷调查,得到了如下的4×4列联表:
(1)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?
(2)已知在患有颈锥病的10名未过度使用电子产品的大学生中,有3名大学生又患有肠胃炎,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患肠胃炎的学生人数为ε,求ε的分布列及数学期望.
参考数据与公式:
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d$.
| 未过度使用 | 过度使用 | 合计 | |
| 未患颈椎病 | 15 | 5 | 20 |
| 患颈椎病 | 10 | 20 | 30 |
| 合计 | 25 | 25 | 50 |
(2)已知在患有颈锥病的10名未过度使用电子产品的大学生中,有3名大学生又患有肠胃炎,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患肠胃炎的学生人数为ε,求ε的分布列及数学期望.
参考数据与公式:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |