题目内容

9.某校投篮比赛规则如下:选手若能连续命中两次,即停止投篮,晋级下一轮.假设某选手每次命中率都是0.6,且每次投篮结果相互独立,则该选手恰好投篮4次晋级下一轮的概率为(  )
A.$\frac{216}{625}$B.$\frac{108}{625}$C.$\frac{36}{625}$D.$\frac{18}{125}$

分析 根据题意得,该选手第二次不中,第三次和第四次必须投中,由此能求出该选手恰好投篮4次晋级下一轮的概率.

解答 解:根据题意得,该选手第二次不中,
第三次和第四次必须投中,
∴该选手恰好投篮4次晋级下一轮的概率为:
$1×0.4×0.6×0.6=\frac{18}{125}$.
故选:D.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意相互独立事件概率加法公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网