题目内容
1.已知等比数列{an}的公比为$-\frac{1}{2}$,则$\frac{{{a_1}+{a_3}+{a_5}}}{{{a_2}+{a_4}+{a_6}}}$的值是( )| A. | -2 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
分析 利用等比数列的通项公式即可得出.
解答 解:∵等比数列{an}的公比为$-\frac{1}{2}$,
则$\frac{{{a_1}+{a_3}+{a_5}}}{{{a_2}+{a_4}+{a_6}}}$=$\frac{{a}_{1}+{a}_{3}+{a}_{5}}{q({a}_{1}+{a}_{3}+{a}_{5})}$=-2.
故选:A.
点评 本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
9.某校投篮比赛规则如下:选手若能连续命中两次,即停止投篮,晋级下一轮.假设某选手每次命中率都是0.6,且每次投篮结果相互独立,则该选手恰好投篮4次晋级下一轮的概率为( )
| A. | $\frac{216}{625}$ | B. | $\frac{108}{625}$ | C. | $\frac{36}{625}$ | D. | $\frac{18}{125}$ |
13.在△ABC中,sinA:sinB:sinC=2:3:$\sqrt{10}$,则cosC=( )
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
10.已知定义在R上的函数f(x)满足条件:
①对任意的x∈R,都有f(x+4)=f(x);
②函数f(x+2)的关于y轴对称
③对任意的x1,x2∈[0,2],且x1<x2,都有f(x1)<f(x2).
则下列结论正确的是( )
①对任意的x∈R,都有f(x+4)=f(x);
②函数f(x+2)的关于y轴对称
③对任意的x1,x2∈[0,2],且x1<x2,都有f(x1)<f(x2).
则下列结论正确的是( )
| A. | f(7)<f(6.5)<f(4.5) | B. | f(7)<f(4.5)<f(6.5) | C. | f(4.5)<f(6.5)<f(7) | D. | f(4.5)<f(7)<f(6.5) |