ÌâÄ¿ÄÚÈÝ
6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1¹ýµãP£¨a£¬1£©£¬Æä²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=a+\sqrt{2}t\;\;\;}\\{y=1+\sqrt{2}t\;\;\;\;\;}\end{array}}\right.$£¨tΪ²ÎÊý£¬a¡ÊR£©£®ÒÔOΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È+4cos¦È-¦Ñ=0£®£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÒÑÖªÇúÏßC1ÓëÇúÏßC2½»ÓÚA¡¢BÁ½µã£¬ÇÒ|PA|=2|PB|£¬ÇóʵÊýaµÄÖµ£®
·ÖÎö £¨¢ñ£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©¸ù¾Ý²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒå¿ÉÖª|PA|=2|t1|£¬|PB|=2|t2|£¬ÀûÓÃ|PA|=2|PB|£¬·ÖÀàÌÖÂÛ£¬ÇóʵÊýaµÄÖµ£®
½â´ð ½â£º£¨¢ñ£©ÇúÏßC1²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=a+\sqrt{2}t\;\;\;}\\{y=1+\sqrt{2}t\;\;\;\;\;}\end{array}}\right.$£¬¡àÆäÆÕͨ·½³Ìx-y-a+1=0£¬-------£¨2·Ö£©
ÓÉÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È+4cos¦È-¦Ñ=0£¬¡à¦Ñ2cos2¦È+4¦Ñcos¦È-¦Ñ2=0
¡àx2+4x-x2-y2=0£¬¼´ÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ìy2=4x£®-------£¨5·Ö£©
£¨¢ò£©ÉèA¡¢BÁ½µãËù¶ÔÓ¦²ÎÊý·Ö±ðΪt1£¬t2£¬Áª½â$\left\{\begin{array}{l}{y^2}=4x\\ x=a+\sqrt{2}t\\ y=1+\sqrt{2}t\end{array}\right.$µÃ$2{t^2}-2\sqrt{2}t+1-4a=0$
ÒªÓÐÁ½¸ö²»Í¬µÄ½»µã£¬Ôò$¡÷={£¨2\sqrt{2}£©^2}-4¡Á2£¨1-4a£©£¾0$£¬¼´a£¾0£¬ÓÉΤ´ï¶¨ÀíÓÐ$\left\{\begin{array}{l}{t_1}+{t_2}=\sqrt{2}\;\\{t_1}•{t_2}=\frac{1-4a}{2}\end{array}\right.$
¸ù¾Ý²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒå¿ÉÖª|PA|=2|t1|£¬|PB|=2|t2|£¬
ÓÖÓÉ|PA|=2|PB|¿ÉµÃ2|t1|=2¡Á2|t2|£¬¼´t1=2t2»òt1=-2t2-------£¨7·Ö£©
¡àµ±t1=2t2ʱ£¬ÓÐt1+t2=3t2=$\sqrt{2}$£¬t1t2=2t22=$\frac{1-4a}{2}$£¬¡àa=$\frac{1}{36}$£¾0£¬·ûºÏÌâÒ⣮-------£¨8·Ö£©
µ±t1=-2t2ʱ£¬ÓÐt1+t2=-t2=$\sqrt{2}$£¬t1t2=-2t22=$\frac{1-4a}{2}$£¬¡àa=$\frac{9}{4}$£¾0£¬·ûºÏÌâÒ⣮-------£¨9·Ö£©
×ÛÉÏËùÊö£¬ÊµÊýaµÄֵΪ$a=\frac{1}{36}$»ò$\frac{9}{4}$£®-------£¨10·Ö£©
µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬿¼²é²ÎÊýµÄ¼¸ºÎÒâÒ壬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮
| A£® | {x|x=2a£¬a¡ÊA} | B£® | {x|x=2a£¬a¡ÊA} | C£® | {x|x=a-1£¬a¡ÊN} | D£® | {x|x=a2£¬a¡ÊN} |
| A£® | 860 | B£® | 720 | C£® | 1020 | D£® | 1040 |
| A£® | 5 | B£® | $\frac{1}{5}$ | C£® | $\frac{11}{2}$ | D£® | $\frac{2}{11}$ |
| A£® | $£¨\frac{1-ln2}{8}£¬\frac{1-ln2}{6}£©¡È£¨\frac{ln2-1}{6}£¬\frac{ln2-1}{8}£©$ | B£® | $£¨\frac{ln2-1}{6}£¬\frac{ln2-1}{8}£©$ | ||
| C£® | $£¨\frac{1-ln2}{8}£¬\frac{1-ln2}{6}£©$ | D£® | $£¨\frac{1-ln2}{8}£¬\frac{ln2-1}{6}£©$ |
| A£® | y=log${\;}_{\frac{1}{2}}$|x| | B£® | y=x${\;}^{\frac{1}{2}}$ | C£® | y=$\frac{{{2^x}+{2^{-x}}}}{2}$ | D£® | y=lg$\frac{2-x}{2+x}$ |