题目内容
18.下列函数中,既是偶函数,又在区间(1,2)上是减函数的为( )| A. | y=log${\;}_{\frac{1}{2}}$|x| | B. | y=x${\;}^{\frac{1}{2}}$ | C. | y=$\frac{{{2^x}+{2^{-x}}}}{2}$ | D. | y=lg$\frac{2-x}{2+x}$ |
分析 根据函数单调性和奇偶性的性质分别进行判断即可.
解答 解:对于A,既是偶函数,又在区间(1,2)上是减函数;
对于B,函数的定义域不关于原点对称,不表示偶函数;
对于C,是偶函数,在区间(1,2)上是增函数;
对于D,是奇函数.
故选A.
点评 本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.
练习册系列答案
相关题目
10.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号之和不小于15的概率为( )
| A. | $\frac{1}{32}$ | B. | $\frac{1}{64}$ | C. | $\frac{3}{64}$ | D. | $\frac{3}{32}$ |
10.
某中学环保社团参照国家环境标准,制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):
该社团将该校区在2016年连续100天的空气质量指数数据作为样本,绘制了如图的频率分布表,将频率视为概率.估算得全年空气质量等级为2级良的天数为73天(全年以365天计算).
(Ⅰ)求x,y,a,b的值;
(Ⅱ)请在答题卡上将频率分布直方图补全(并用铅笔涂黑矩形区域),并估算这100天空气质量指数监测数据的平均数.
| 空气质量指数 | (0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] |
| 空气质量等级 | 1级优 | 2级良 | 3级轻度污染 | 4级中度污染 | 5级重度污染 | 6级严重污染 |
| 空气质量指数 | 频数 | 频率 |
| (0,50] | x | a |
| (50,100] | y | b |
| (100,150] | 25 | 0.25 |
| (150,200] | 20 | 0.2 |
| (200,250] | 15 | 0.15 |
| (250,300] | 10 | 0.1 |
(Ⅱ)请在答题卡上将频率分布直方图补全(并用铅笔涂黑矩形区域),并估算这100天空气质量指数监测数据的平均数.
3.从某高校在校大学生中随机选取5名女大学生,由她们身高和体重的数据得到的回归直线方程为$\widehat{y}$=0.79x-73.56,数据列表是:
则其中的数据a=163.
| 身高x(cm) | 155 | 161 | a | 167 | 174 |
| 体重y(kg) | 49 | 53 | 56 | 58 | 64 |
10.下列结论中错误的是( )
| A. | 若0<α<$\frac{π}{2}$,则sinα<tanα | |
| B. | 若α是第二象限角,则$\frac{α}{2}$为第一象限或第三象限角 | |
| C. | 若角α的终边过点P(3k,4k)(k≠0),则sinα=$\frac{4}{5}$ | |
| D. | 若扇形的周长为6,半径为2,则其中心角的大小为1弧度 |
7.已知抛物线y2=4x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,点B是点F关于坐标原点的对称点,且以AB为直径的圆过点F,则双曲线的离心率为( )
| A. | 2$\sqrt{2}$-1 | B. | $\sqrt{2}$+1 | C. | 8$\sqrt{2}$-8 | D. | 2$\sqrt{2}$-2 |