题目内容
16.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf'(x)-f(x)<0成立,则f(x)>0的x的取值范围是(-∞,-1)∪(0,1).分析 由已知当x>0时总有xf′(x)-f(x)>0成立,可判断函数g(x)为增函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(-∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,而不等式f(x)>0等价于xg(x)>0,分类讨论即可求出.
解答
解:设g(x)=$\frac{f(x)}{x}$,则g(x)的导数为:
g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵当x>0时总有xf′(x)<f(x)成立,
即当x>0时,g′(x)恒小于0,
∴当x>0时,函数g(x)=$\frac{f(x)}{x}$为减函数,
又∵g(-x)=g(x),
∴函数g(x)为定义域上的偶函数
又∵g(-1)=$\frac{f(-1)}{-1}$=0,
∴函数g(x)的大致图象如图所示:
数形结合可得,不等式f(x)>0?x•g(x)>0
?$\left\{\begin{array}{l}{x>0}\\{g(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{g(x)<0}\end{array}\right.$,
?0<x<1或x<-1.
∴f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).
故答案为:(-∞,-1)∪(0,1)
点评 本题考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式的应用问题,是综合题目.
练习册系列答案
相关题目
7.若离散型随机变量X的分布列为:
则实数a的值为$\frac{1}{5}$.
| X | 0 | 1 |
| P | 10a2-a | 2-6a |
4.
已知函数f(x)=ax3+bx2+c,其导函数f'(x)的图象如图,则函数f(x)的极小值为( )
| A. | c | B. | a+b+c | C. | 8a+4b+c | D. | 3a+2b |