题目内容

8.已知sinx=x-$\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+…{({-1})^{n-1}}\frac{{{x^{2n-1}}}}{{({2n-1})!}}$+…,由sinx=0有无穷多个根;0,±π,±2π,±3π,…,可得:$sinx=x({1-\frac{x^2}{π^2}})({1-\frac{x^2}{{4{π^2}}}})({1-\frac{x^2}{{9{π^2}}}})…$,把这个式子的右边展开,发现-x3的系统为$\frac{1}{π^2}+\frac{1}{{{{({2π})}^2}}}+\frac{1}{{{{({3π})}^2}}}+…=\frac{1}{3!}$,即$\frac{1}{1^2}+\frac{1}{{{{(2)}^2}}}+\frac{1}{{{{(3)}^2}}}+…=\frac{π^2}{6}$,请由cosx=1-$\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+…+{({-1})^{n-1}}\frac{{{x^{2({n-1})}}}}{{2({n-1})!}}$+…出现,类比上述思路与方法,可写出类似的一个结论$\frac{1}{{1}^{2}}$+$\frac{1}{{3}^{2}}$+…=$\frac{{π}^{2}}{8}$.

分析 直接利用类比推理,即可得出结论.

解答 解:由cosx=0有无穷多个根:±$\frac{1}{2}$π,±$\frac{3}{2}$π,…,
可得:cosx=(1-$\frac{{x}^{2}}{\frac{1}{4}{π}^{2}}$)(1-$\frac{{x}^{2}}{\frac{9}{4}{π}^{2}}$)…,把这个式子的右边展开,发现x2的系数为$\frac{1}{\frac{1}{4}{π}^{2}}$+$\frac{1}{\frac{9}{4}{π}^{2}}$+…=$\frac{1}{2}$,
即$\frac{1}{{1}^{2}}$+$\frac{1}{{3}^{2}}$+…=$\frac{{π}^{2}}{8}$.
故答案为$\frac{1}{{1}^{2}}$+$\frac{1}{{3}^{2}}$+…=$\frac{{π}^{2}}{8}$.

点评 本题考查的知识点是类比推理,考查学生的计算能力,难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网