题目内容

20.设p:$\frac{2x-1}{x-1}≤0$,q:x2-(2a+1)x+a(a+1)≤0,若?q是?p的充分不必要条件,求实数a的取值范围.

分析 分别求出关于p,q的不等式,根据?q是?p的充分不必要条件,得到关于a的不等式组,解出即可.

解答 解:由$\frac{2x-1}{x-1}≤0$,解得:$\frac{1}{2}$≤x<1,
故p:$\frac{1}{2}$≤x<1,
由:x2-(2a+1)x+a(a+1)≤0,解得:a≤x≤a+1,
故q:a≤x≤a+1,
若?q是?p的充分不必要条件,
则p是q的充分不必要条件,
则[$\frac{1}{2}$,1)?[a,a+1],
故$\left\{\begin{array}{l}{a≤\frac{1}{2}}\\{a+1≥1}\end{array}\right.$,解得:0≤a≤$\frac{1}{2}$,
即a的范围是[0,$\frac{1}{2}$].

点评 本题考查了充分必要条件,考查解不等式问题以及集合的包含关系,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网