题目内容

阅读:已知a、b∈(0,+∞),a+b=1,求y=
1
a
+
2
b
的最小值.解法如下:y=
1
a
+
2
b
=(
1
a
+
2
b
)(a+b)=
b
a
+
2a
b
+3≥3+2
2
,当且仅当
b
a
=
2a
b
,即a=
2
-1,b=2-
2
时取到等号,则y=
1
a
+
2
b
的最小值为3+2
2
.应用上述解法,求解下列问题:
(1)已知a,b,c∈(0,+∞),a+b+c=1,求y=
1
a
+
1
b
+
1
c
的最小值;
(2)已知x∈(0,
1
2
),求函数y=
1
x
+
8
1-2x
的最小值;
(3)已知正数a1、a2、a3,…,an,a1+a2+a3+…+an=1,求证:S=
a12
a1+a2
+
a22
a2+a3
+
a32
a3+a4
+…+
an2
an+a1
1
2
考点:基本不等式
专题:不等式的解法及应用
分析:利用“乘1法”和基本不等式即可得出.
解答: 解(1)∵a+b+c=1,
∴y=
1
a
+
1
b
+
1
c
=(a+b+c)(
1
a
+
1
b
+
1
c
)
=3+(
b
a
+
a
b
+
c
a
+
a
c
+
c
b
+
b
c
)
≥3+2
b
a
a
b
+2
c
a
a
c
+2
c
b
b
c
=9,
当且仅当a=b=c=
1
3
时取等号.即y=
1
a
+
1
b
+
1
c
的最小值为9.
(2)y=
2
2x
+
8
1-2x
=(
2
2x
+
8
1-2x
)(2x+1-2x)
=10+2
1-2x
2x
+8•
2x
1-2x

x∈(0,
1
2
)
,∴2•
1-2x
2x
+8•
2x
1-2x
≥2
2(1-2x)
2x
8•2x
1-2x
=8,
当且仅当
2(1-2x)
2x
=
8•2x
1-2x
,即x=
1
6
(0,
1
2
)
时取到等号,则y≥18,
∴函数y=
1
x
+
8
1-2x
的最小值为18.
(3)∵a1+a2+a3+…+an=1,
∴2S=(
a12
a1+a2
+
a22
a2+a3
+
a32
a3+a4
+…+
an2
an+a1
)[(a1+a2)+(a2+a3)+…+(an+a1)]
=(
a
2
1
+
a
2
2
+…+
a
2
n
)
+[
a
2
1
a1+a2
(a2+a3)
+
a
2
2
a2+a3
(a1+a2)
+…+
a
2
n
an+a1
(a1+a2)
+
a
2
1
a1+a2
(a3+a4)+…]

≥(
a
2
1
+
a
2
2
+…+
a
2
n
)
+(2a1a2+2a2a3+…+2ana1)=(a1+a2+…+an)2=1.
当且仅当a1=a2=…=an=
1
n
时取到等号,则S≥
1
2
点评:本题考查了“乘1法”和基本不等式的性质,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网