题目内容

已知等比数列{an}满足a1a2=2a3,且a1,a2+2,a3成等差数列.数列{bn}满足b1log2a1+b2log2a2+…+bnlog2an=
n(n+1)
2
(n∈N*
(1)求数列{an}和{bn}的通项公式.
(2)求证:
n
2(n+2)
n
k=1
(1-
bk
bk+1
1
bk+1
5
6
(n∈N*).
考点:数列的求和,对数的运算性质,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件得
a12q=2a1q2
2(a1q+2)=a1+a1q2
,由此能求出
a
 
n
=2n+1
.从而得到2b1+3b2+…+(n+1)bn=
n(n+1)
2
,2b1+3b2+…+nbn-1=
(n-1)n
2
,两式相减,能求出bn=
n
n+1

(2)由(1-
bk
bk+1
)•
1
bk+1
1
k+1
-
1
k+2
,能证明
n
k=1
(1-
bk
bk+1
)
1
bk+1
n
2(n+2)
.由(
1
bk
-
1
bk+1
bk
bk+1
=(
1
bk 
-
1
bk+1
)(
bk
bk+1
+
bk
bk+1
),能证明
n
k=1
(1-
bk
bk+1
)
1
bk+1
5
6
,所以
n
2(n+2)
n
k=1
(1-
bk
bk+1
1
bk+1
5
6
(n∈N*).
解答: (1)解:∵等比数列{an}满足a1a2=2a3,且a1,a2+2,a3成等差数列,
a12q=2a1q2
2(a1q+2)=a1+a1q2

解得
a1=4
q=2
,∴
a
 
n
=2n+1

∵b1log2a1+b2log2a2+…+bnlog2an=
n(n+1)
2

∴2b1+3b2+…+(n+1)bn=
n(n+1)
2
,n=1时,2b1=1,b1=
1
2

当n≥2时,2b1+3b2+…+(n+1)bn=
n(n+1)
2

2b1+3b2+…+nbn-1=
(n-1)n
2

两式相减,得(n+1)bn=
n(n+1)
2
-
n(n-1)
2
=n

bn=
n
n+1
.n=1时也成立,
bn=
n
n+1

(2)证明:∵(1-
bk
bk+1
)•
1
bk+1
=
1
(k+1)2
k+2
k+1

1
(k+1)2
1
(k+1)(k+2)
=
1
k+1
-
1
k+2

n
k=1
(1-
bk
bk+1
)
1
bk+1
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2

=
1
2
-
1
n+2
=
n
2(n+2)

n
k=1
(1-
bk
bk+1
)
1
bk+1
=
n
k=1
(
1
bk
-
1
bk+1
)
bk
bk+1

∴(
1
bk
-
1
bk+1
bk
bk+1
=(
1
bk
-
1
bk+1
)(
1
bk
+
1
bk+1
bk
bk+1

=(
1
bk 
-
1
bk+1
)(
bk
bk+1
+
bk
bk+1
),
bk
bk+1
=
k(k+2)
(k+1)2
<1

n
k=1
(1-
bk
bk+1
)
1
bk+1
<2
n
k=1
(
1
bn
-
1
bn+1
)

=2(
2
-
n+2
n+1
<2(
2
-1)<
5
6

n
2(n+2)
n
k=1
(1-
bk
bk+1
1
bk+1
5
6
(n∈N*).
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网