题目内容

已知F是双曲线
x2
a2
-
y2
4
=1的左焦点,双曲线右支上一动点P,且PD⊥x轴,D为垂足,若线段|FP|-|PD|的最小值为2
5
,则双曲线的离心率为
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:设双曲线的右焦点为F′.由定义可得|FP|-|PF′|=2a.于是|FP|-|PD|=2a+|PF′|-|PD|,由于|PF′|≥|PD|,
可得当D为双曲线的右焦点F′时,2a+|PF′|-|PD|取得最小值2a,即可得出.
解答: 解:设双曲线的右焦点为F′.
∵|FP|-|PF′|=2a.
∴|FP|-|PD|=2a+|PF′|-|PD|,
∵|PF′|≥|PD|,
∴当D为双曲线的右焦点F′时,2a+|PF′|-|PD|取得最小值2a,
∴2a=2
5

∴a=
5

∵b=2,
∴c=
a2+b2
=3.
∴e=
c
a
=
3
5
=
3
5
5

故答案为:
3
5
5
点评:本题考查了双曲线的标准方程及其性质、直角三角形的边角关系,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网