题目内容

14.已知函数$f(x)=[x+\frac{3}{2}]$(取整函数),$g(x)=\left\{{\begin{array}{l}{1,x∈Q}\\{0,x∉Q}\end{array}}\right.$,则f(g(π))的值为(  )
A.1B.0C.2D.π

分析 先求出g(π)=0,从而f(g(π))=f(0),由此能求出结果.

解答 解:∵函数$f(x)=[x+\frac{3}{2}]$(取整函数),$g(x)=\left\{{\begin{array}{l}{1,x∈Q}\\{0,x∉Q}\end{array}}\right.$,
∴g(π)=0,
f(g(π))=f(0)=[$\frac{3}{2}$]=1.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网