题目内容
14.已知函数$f(x)=[x+\frac{3}{2}]$(取整函数),$g(x)=\left\{{\begin{array}{l}{1,x∈Q}\\{0,x∉Q}\end{array}}\right.$,则f(g(π))的值为( )| A. | 1 | B. | 0 | C. | 2 | D. | π |
分析 先求出g(π)=0,从而f(g(π))=f(0),由此能求出结果.
解答 解:∵函数$f(x)=[x+\frac{3}{2}]$(取整函数),$g(x)=\left\{{\begin{array}{l}{1,x∈Q}\\{0,x∉Q}\end{array}}\right.$,
∴g(π)=0,
f(g(π))=f(0)=[$\frac{3}{2}$]=1.
故选:A.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
9.下列函数在区间(-∞,0)上是增函数的是( )
| A. | y=-$\frac{1}{x}$ | B. | y=2x2-x-1 | C. | y=|x| | D. | y=-2x-3 |
6.已知数列{an}满足条件$\frac{1}{3}{a_1}+\frac{1}{3^2}{a_2}+\frac{1}{3^3}{a_3}+…+\frac{1}{3^n}{a_n}=3n+1$,则数列{an}的通项公式为( )
| A. | ${a_n}={3^n}$ | B. | ${a_n}={3^{n+1}}$ | ||
| C. | ${a_n}=\left\{\begin{array}{l}12,n=1\\{3^n},n≥2\end{array}\right.$ | D. | ${a_n}=\left\{\begin{array}{l}12,n=1\\{3^{n+1}},n≥2\end{array}\right.$ |
4.
如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN,若AB=14,AC=19,则MN的长为( )
| A. | 2 | B. | 2.5 | C. | 3 | D. | 3.5 |