题目内容

已知正四棱锥P-ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是
 
考点:二面角的平面角及求法
专题:计算题,空间位置关系与距离
分析:正四棱锥P-ABCD中,O为正方形ABCD的两对角线的交点,则PO⊥面ABCD,PO交MN于E,过A作直线l∥BD,则l⊥EA,l⊥AO,可得∠EAO为所求二面角的平面角,即可得出结论.
解答: 解:如图,正四棱锥P-ABCD中,O为正方形ABCD的两对角线的交点,则PO⊥面ABCD,PO交MN于E,则PE=EO,
又BD⊥AC,∴BD⊥面PAC,
过A作直线l∥BD,则l⊥EA,l⊥AO,
∴∠EAO为所求二面角的平面角.
又EO=
1
2
AO=
2
4
a,AO=
2
2
a,∴AE=
10
4
a
∴cos∠EAO=
2
5
5

∴截面AMN与底面ABCD所成的二面角的余弦值是
2
5
5
点评:本题考查截面AMN与底面ABCD所成的二面角的余弦值,考查学生的计算能力,正确作出二面角的平面角是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网