题目内容

已知{an}是公差为d的等差数列,它的前n项和为Sn,S4=2S2+4.
(Ⅰ)求公差d的值;
(Ⅱ)若对任意的n∈N*,都有Sn≥S8成立,求a1的取值范围.
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件,利用等差数列的前n项和公式能求出公差d=1.
(Ⅱ)由Sn≥S8成立,得到sn=
1
2
n2+(a1-
1
2
)n=
1
2
[n-(
1
2
-a1)]2-
1
2
(
1
2
-a1)2
在n=8时取最小值,由此能求出a1的取值范围.
解答: 解:(Ⅰ)∵{an}是公差为d的等差数列,它的前n项和为Sn,S4=2S2+4,
4a1+
3×4
2
d=2(2a1+d)+4

解得公差d=1.…(5分)
(Ⅱ)由Sn≥S8成立,
sn=
1
2
n2+(a1-
1
2
)n=
1
2
[n-(
1
2
-a1)]2-
1
2
(
1
2
-a1)2
在n=8时取最小值,…(8分)
∵n∈N*,∴
15
2
1
2
-a1
17
2
,即:-8≤a1≤-7,
∴a1的取值范围是[-8,-7].…(12分)
点评:本题考查等差数列的公差和首项的取值范围的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网