题目内容
20.已知f(x)为R上的可导函数,且?x∈R,均有f(x)>f′(x),则以下判断正确的是( )| A. | f(2016)>e2016f(0) | B. | f(2016)<e2016f(0) | ||
| C. | f(2016)=e2016f(0) | D. | f(2016)与e2016f(0)大小无法确定 |
分析 设函数h(x)=$\frac{f(x)}{{e}^{x}}$,求得h′(x)<0,可得h(x)在R上单调递减,可得h(2016)<h(0),再进一步化简,可得结论.
解答 解:设函数h(x)=$\frac{f(x)}{{e}^{x}}$,
∵?x∈R,均有f(x)>f′(x),则h′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$<0,
∴h(x)在R上单调递减,∴h(2016)<h(0),即 $\frac{f(2016)}{{e}^{2016}}$<$\frac{f(0)}{{e}^{0}}$<,
即 f(2016)<e2016f(0),
故选:B.
点评 本题主要考查利用导数研究函数的单调性,利用函数的单调性比较两个函数值的大小,属于基础题.
练习册系列答案
相关题目
19.已知函数f(x)=sin(ωx+$\frac{π}{8}$)(x∈R,ω>0)的最小正周期为π,为了得到函数g(x)=cosωx的图象,只要将y=f(x)的图象( )
| A. | 向左平移$\frac{3π}{4}$个单位长度 | B. | 向右平移$\frac{3π}{4}$个单位长度 | ||
| C. | 向左平移$\frac{3π}{16}$个单位长度 | D. | 向右平移$\frac{3π}{16}$个单位长度 |
9.若函数f(x)=2-|x|+c有零点,则实数c的取值范围是( )
| A. | (0,1] | B. | [0,1] | C. | [-1,0) | D. | (0,+∞) |
10.(1-$\frac{1}{x}$)(1+x)5的展开式中项x3的系数为( )
| A. | 7 | B. | 8 | C. | 10 | D. | 5 |