题目内容
14.长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=2$\sqrt{2}$,则长方体ABCD-A1B1C1D1的外接球的表面积为( )| A. | 36π | B. | 28π | C. | 16π | D. | 12π |
分析 由长方体的对角线公式,算出长方体对角线AC1的长,从而得到长方体外接球的直径,结合球的表面积公式即可得到,该球的表面积.
解答 解:∵长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=2$\sqrt{2}$,
∴长方体的对角线AC1=$\sqrt{4+4+8}$=4,
∵长方体ABCD-A1B1C1D1的各顶点都在同一球面上,
∴球的一条直径为AC1=4,可得半径R=2,
因此,该球的表面积为S=4πR2=4π×22=16π.
故选:C.
点评 本题给出长方体的长、宽、高,求长方体外接球的表面积,着重考查了长方体的对角线公式、长方体的外接球和球的表面积公式等知识,属于基础题.
练习册系列答案
相关题目
4.若点A的坐标是(4,2),F是抛物线y2=2x的焦点,点P在抛物线上移动,为使得|PA|+|PF|取得最小值,则P点的坐标是( )
| A. | (1,2) | B. | (2,1) | C. | (2,2) | D. | (0,1) |
9.焦点为F1(-2,0),F2(2,0),长轴长为10的椭圆的标准方程为( )
| A. | $\frac{x^2}{100}+\frac{y^2}{96}=1$ | B. | $\frac{x^2}{25}+\frac{y^2}{21}=1$ | C. | $\frac{x^2}{96}+\frac{y^2}{100}=1$ | D. | $\frac{x^2}{21}+\frac{y^2}{25}=1$ |
19.已知A,B,C三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如表(单位:小时).
(1)试估计C班学生人数;
(2)从A班和B班抽出来的学生中各选一名,记A班选出的学生为甲,B班选出的学生为乙,求甲的锻炼时间大于乙的锻炼时间的概率.
| A 班 | 6 | 6.5 | 7 | |
| B 班 | 6 | 7 | 8 | |
| C 班 | 5 | 6 | 7 | 8 |
(2)从A班和B班抽出来的学生中各选一名,记A班选出的学生为甲,B班选出的学生为乙,求甲的锻炼时间大于乙的锻炼时间的概率.
6.“2x>2”是“(x-2)(x-4)<0”成立的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |